Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 3: 17017, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057864

RESUMO

Different methods capable of developing complex structures and building elements with high-aspect-ratio nanostructures combined with microstructures, which are of interest in nanophotonics, are presented. As originals for subsequent replication steps, two families of masters were developed: (i) 3.2 µm deep, 180 nm wide trenches were fabricated by silicon cryo-etching and (ii) 9.8 µm high, 350 nm wide ridges were fabricated using 2-photon polymerization direct laser writing. Both emerging technologies enable the vertical smooth sidewalls needed for a successful imprint into thin layers of polymers with aspect ratios exceeding 15. Nanoridges with high aspect ratios of up to 28 and no residual layer were produced in Ormocers using the micromoulding into capillaries (MIMIC) process with subsequent ultraviolet-curing. This work presents and balances the different fabrication routes and the subsequent generation of working tools from masters with inverted tones and the combination of hard and soft materials. This provides these techniques with a proof of concept for their compatibility with high volume manufacturing of complex micro- and nanostructures.

2.
Opt Express ; 23(19): 25365-76, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406732

RESUMO

Plano-convex microlens arrays of organic-inorganic polymers with tailored optical properties are presented. The fine-tuning of each microlens within an array is achieved by confining inkjet printed drops of the polymeric ink onto pre-patterned substrates. The lens optical properties are thus freely specified, and high numerical apertures from 0.45 to 0.9 and focal lengths between 10 µm and 100 µm are demonstrated, confirming theoretical predictions. Combining nanoimprint lithography approaches and inkjet printing enables using the same material for the microlenses and their substrates, improving the optical performances. Microlens arrays with desired specifications are printed reaching yields up to 100% and high lens reproducibility with standard deviations of the apparent contact angle under 1° and of the numerical apertures and focal lengths under 6%. Microlens arrays involving lenses with different characteristics, e.g. multi focal length, and thus focal planes separated by only few microns are printed with the same reproducibility.

3.
Nanoscale ; 6(18): 10495-9, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24842483

RESUMO

We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA