Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5070, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871729

RESUMO

In acute ischemic stroke, even when successful recanalization is obtained, downstream microcirculation may still be obstructed by microvascular thrombosis, which is associated with compromised brain reperfusion and cognitive decline. Identifying these microthrombi through non-invasive methods remains challenging. We developed the PHySIOMIC (Polydopamine Hybridized Self-assembled Iron Oxide Mussel Inspired Clusters), a MRI-based contrast agent that unmasks these microthrombi. In a mouse model of thromboembolic ischemic stroke, our findings demonstrate that the PHySIOMIC generate a distinct hypointense signal on T2*-weighted MRI in the presence of microthrombi, that correlates with the lesion areas observed 24 hours post-stroke. Our microfluidic studies reveal the role of fibrinogen in the protein corona for the thrombosis targeting properties. Finally, we observe the biodegradation and biocompatibility of these particles. This work demonstrates that the PHySIOMIC particles offer an innovative and valuable tool for non-invasive in vivo diagnosis and monitoring of microthrombi, using MRI during ischemic stroke.


Assuntos
Meios de Contraste , Modelos Animais de Doenças , Compostos Férricos , Indóis , Imageamento por Ressonância Magnética , Polímeros , Trombose , Animais , Polímeros/química , Imageamento por Ressonância Magnética/métodos , Indóis/química , Camundongos , Meios de Contraste/química , Compostos Férricos/química , Trombose/diagnóstico por imagem , Masculino , Acidente Vascular Cerebral/diagnóstico por imagem , Humanos , Fibrinogênio/metabolismo , AVC Isquêmico/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia
2.
Blood ; 140(26): 2844-2848, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960811

RESUMO

Recombinant human tissue plasminogen activator (rh-tPA) is an important thrombolytic agent for treatment of acute ischemic stroke. It requires fibrin binding for plasminogen activation. In contrast, Microlyse, a novel thrombolytic agent, requires von Willebrand factor (VWF) binding for plasminogen activation. We compared rh-tPA with Microlyse, administered 20 minutes after inducing thrombosis, in 2 randomized blinded acute ischemic stroke mouse models. Thrombosis was induced in the middle cerebral artery with different experimental triggers. Where thrombin infusion generates fibrin-rich thrombi, topical FeCl3 application generates platelet-rich thrombi. In the fibrin-rich model, both rh-tPA and Microlyse increased cortical reperfusion (determined by laser speckle imaging) 10 minutes after therapy administration (35.8 ± 17.1%; P = .001 39.3 ± 13.1%; P < .0001; 15.6 ± 7.5%, respectively, vs vehicle). In addition, both thrombolytic agents reduced cerebral lesion volume (determined by magnetic resonance imaging) after 24 hours (18.9 ± 11.2 mm3; P = .033; 16.1 ± 13.9 mm3; P = .018; 26.6 ± 5.6 mm3, respectively, vs vehicle). In the platelet-rich model, neither rh-tPA nor Microlyse increased cortical reperfusion 10 minutes after therapy (7.6 ± 8.8%; P = .216; 16.3 ± 13.9%; P = .151; 10.1 ± 7.9%, respectively, vs vehicle). However, Microlyse, but not rh-tPA, decreased cerebral lesion volumes (13.9 ± 11.4 mm3; P < .001; 23.6 ± 11.1 mm3; P = .188; 30.3 ± 10.9 mm3, respectively, vs vehicle). These findings support broad applicability of Microlyse in ischemic stroke, irrespective of the thrombus composition.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Tromboembolia , Trombose , Camundongos , Humanos , Animais , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fator de von Willebrand/uso terapêutico , Fibrina/metabolismo , Terapia Trombolítica , Plasminogênio/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
3.
Sci Adv ; 8(28): eabm3596, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857494

RESUMO

Molecular magnetic resonance imaging (MRI) holds great promise for diagnosis and therapeutic monitoring in a wide range of diseases. However, the low intrinsic sensitivity of MRI to detect exogenous contrast agents and the lack of biodegradable microprobes have prevented its clinical development. Here, we synthetized a contrast agent for molecular MRI based on a previously unknown mechanism of self-assembly of catechol-coated magnetite nanocrystals into microsized matrix-based particles. The resulting biodegradable microprobes (M3P for microsized matrix-based magnetic particles) carry up to 40,000 times higher amounts of superparamagnetic material than classically used nanoparticles while preserving favorable biocompatibility and excellent water dispersibility. After conjugation to monoclonal antibodies, targeted M3P display high sensitivity and specificity to detect inflammation in vivo in the brain, kidneys, and intestinal mucosa. The high payload of superparamagnetic material, excellent toxicity profile, short circulation half-life, and widespread reactivity of the M3P particles provides a promising platform for clinical translation of immuno-MRI.

4.
Biomaterials ; 277: 121102, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482087

RESUMO

Intravenous administration of fibrinolytic drugs is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and might trigger hemorrhagic transformations. Therefore, it is mandatory to develop innovative nanomedicine-based solutions for more efficient and safer thrombolysis with biocompatible and biodegradable thrombus-targeted nanocarrier. Herein, fucoidan-functionalized hydrogel polysaccharide submicroparticles with high biocompatibility are elaborated by the inverse miniemulsion/crosslinking method. They are loaded with the gold standard fibrinolytic - alteplase - to direct site-specific fibrinolysis due to nanomolar interactions between fucoidan and P-selectin overexpressed on activated platelets and endothelial cells in the thrombus area. The thrombus targeting properties of these particles are validated in a microfluidic assay containing recombinant P-selectin and activated platelets under arterial and venous blood shear rates as well as in vivo. The experiments on the murine model of acute thromboembolic ischemic stroke support this product's therapeutic efficacy, revealing a faster recanalization rate in the middle cerebral artery than with free alteplase, which reduces post-ischemic cerebral infarct lesions and blood-brain barrier permeability. Altogether, this proof-of-concept study demonstrates the potential of a biomaterial-based targeted nanomedicine for the precise treatment of acute thrombotic events, such as ischemic stroke.


Assuntos
Acidente Vascular Cerebral , Ativador de Plasminogênio Tecidual , Animais , Células Endoteliais , Fibrinólise , Fibrinolíticos/uso terapêutico , Camundongos , Polissacarídeos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA