Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Heliyon ; 10(1): e23478, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226283

RESUMO

The use of passive immunotherapy, either as plasma or purified antibodies, has been recommended to treat the emerging infectious diseases (EIDs) in the absence of alternative therapeutic options. Here, we compare the neutralization potency of various passive immunotherapy approaches designed to provide the immediate neutralizing antibodies as potential EID treatments. To prepare human plasma and purified IgG, we screened and classified individuals into healthy, convalescent, and vaccinated groups against SARS-CoV-2 using qRT-PCR, anti-nucleocapsid, and anti-spike tests. Moreover, we prepared purified IgG from non-immunized and hyperimmunized rabbits against SARS-CoV-2 spike protein. Human and rabbit samples were used to evaluate the neutralization potency by sVNT. All vaccinated and convalescent human plasma and purified IgG groups, as well as purified IgG from hyperimmunized rabbits, had significantly greater levels of spike-specific antibodies than the control groups. Furthermore, when compared to the other groups, the purified IgG from hyperimmunized rabbits exhibited superior levels of neutralizing antibodies, with an IC50 value of 2.08 µg/ml. Additionally, our results indicated a statistically significant positive correlation between the neutralization IC50 value and the positive endpoint concentration of spike-specific antibodies. In conclusion, our study revealed that purified IgG from hyperimmunized animals has greater neutralization potency than other passive immunotherapy methods and may be the most suitable treatment of critically ill patients in EIDs.

2.
Cell Commun Signal ; 22(1): 59, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254135

RESUMO

The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.


Assuntos
Leucemia , Humanos , Leucemia/terapia , Imunoterapia , Células Matadoras Naturais , Fenótipo
3.
Cell Commun Signal ; 22(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167105

RESUMO

BACKGROUND: Breast cancer remains a primary global health concern due to its limited treatment options, frequent disease recurrence, and high rates of morbidity and mortality. Thereby, there is a need for more effective treatment approaches. The proposal suggests that the combination of targeted therapy with other antitumoral agents could potentially address drug resistance. In this study, we examined the antitumoral effect of combining metformin, an antidiabetic drug, with targeted therapies, including tamoxifen for estrogen receptor-positive (MCF-7), trastuzumab for HER2-positive (SKBR-3), and antibody against ROR1 receptor for triple-negative breast cancer (MDA-MB-231). METHODS: Once the expression of relevant receptors on each cell line was confirmed and appropriate drug concentrations were selected through cytotoxicity assays, the antitumor effects of both monotherapy and combination therapy on colony formation, migration, invasion were assessed in in vitro as well as tumor area and metastatic potential in ex ovo Chick chorioallantoic membrane (CAM) models. RESULTS: The results exhibited the enhanced effects of tamoxifen when combined with targeted therapy. This combination effectively inhibited cell growth, colony formation, migration, and invasion in vitro. Additionally, it significantly reduced tumor size and metastatic potential in an ex ovo CAM model. CONCLUSIONS: The findings indicate that a favorable strategy to enhance the efficacy of breast cancer treatment would be to combine metformin with targeted therapies.


Assuntos
Neoplasias da Mama , Metformina , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Metformina/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Tamoxifeno/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células
6.
PLoS One ; 18(10): e0292434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796859

RESUMO

Cystic echinococcosis (CE) is a life-threatening helminthic disease caused by the Echinococcus granulosus sensulato complex. Previous evidence indicates that the host's innate immune responses against CE can combat and regulate the growth rate and mortality of hydatid cyst in the host's internal organs. However, the survival mechanisms of CE are not yet fully elucidated in the human body. In the present study, the apoptotic effects of fertile and infertile hydatid fluid (HF) were tested on murine peritoneal cells in vivo mice model. Mice were divided into five groups including; control group, fertile HF-treated peritoneal cells, infertile HF-treated peritoneal cells, protoscolices (PSCs)-treated peritoneal cells and HF+PSCs-treated peritoneal cells group. Mice groups were intraperitoneally inoculated with PBS, HF, and/or PSCs. Afterwards, peritoneal cells were isolated and mRNA expression of STAT3, caspase-3, p73 and Smac genes were evaluated by quantitative Real-time PCR. After 48 hours of exposure, the protein levels of Smac and STAT3 was determined by western blotting technique. After 6 hours of exposure, Caspase-3 activity was also measured by fluorometric assay. The intracellular reactive oxygen species (ROS) production was examined in all groups. The mRNA expression levels of p73, caspase-3 and also Caspase-3 activity in HF+PSCs-treated peritoneal cells were higher than in the test and control groups (Pv<0.05), while the mRNA expression level of anti-apoptotic STAT3 and Smac genes in HF+PSC-treated peritoneal cells were lower than in the other groups (Pv<0.05). As well, the level of intracellular ROS in the fertile HCF-treated peritoneal cells, infertile HCF-treated peritoneal cells, PSC-treated peritoneal cells and HF+PSC-treated peritoneal cells groups were significantly higher than in the control group (Pv<0.05).Current findings indicates that oxidative stress and p73 can trigger the apoptosis of murine peritoneal cells through modulator of HF-treated PSCs that is likely one of the hydatid cyst survival mechanisms in vivo mice model.


Assuntos
Apoptose , Equinococose , Echinococcus granulosus , Proteína Tumoral p73 , Animais , Camundongos , Caspase 3/metabolismo , Espécies Reativas de Oxigênio , RNA Mensageiro , Proteína Tumoral p73/metabolismo
7.
Cell Commun Signal ; 21(1): 188, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528446

RESUMO

BACKGROUND: Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS: Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS: NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION: Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.


Assuntos
Leucemia Linfocítica Crônica de Células B , Nanopartículas , Humanos , Rituximab/farmacologia , Rituximab/metabolismo , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo , RNA Interferente Pequeno/metabolismo
8.
Iran J Allergy Asthma Immunol ; 22(3): 233-244, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37524660

RESUMO

An imbalance between regulatory T (Treg) and T-helper (Th)-17 cells has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) exert immunomodulatory properties through secreting exosomes. This study aimed to assess the effect of MSC-derived exosomes (MSC-Exo) on the differentiation of peripheral blood mononuclear cells (PBMCs) into  Tregs from patients with COVID-19. Exosomes were isolated from adipose tissue-derived MSCs. PBMCs were separated from the whole blood of COVID-19 patients (n=20). Treg frequency was assessed before and 48 hours after treatment of PBMCs with MSC-Exo using flow cytometry. Expression of FOXP3 and cytokine genes, and the concentration of cytokines associated with Tregs, were assessed before and after treatment with MSC-Exo. The frequency of CD4+CD25+CD127-  Tregs was significantly higher after treating PBMCs with MSC-Exo (6.695±2.528) compared to before treatment (4.981±2.068). The expressions of transforming growth factor (TGF)-ß1, interleukin (IL)-10, and FOXP3 were significantly upregulated in MSC-Exo-treated PBMCs. The concentration of IL-10 increased significantly after treatment (994.7±543.9 pg/mL) of PBMCs with MSC-Exo compared with before treatment (563.5±408.6 pg/mL). The concentration of TGF-ß was significantly higher in the supernatant of PBMCs after treatment with MSC-Exo (477.0±391.1 pg/mL) than PBMCs before treatment (257.7±226.3 pg/mL). MSC-Exo has the potential to raise anti-inflammatory responses by induction of  Tregs, potentiating its therapeutic effects in COVID-19.


Assuntos
COVID-19 , Exossomos , Células-Tronco Mesenquimais , Humanos , Linfócitos T Reguladores , Leucócitos Mononucleares , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição Forkhead/metabolismo
9.
Front Immunol ; 14: 1209572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457723

RESUMO

Introduction: For many years, surgery, adjuvant and combination chemotherapy have been the cornerstone of pancreatic cancer treatment. Although these approaches have improved patient survival, relapse remains a common occurrence, necessitating the exploration of novel therapeutic strategies. CAR T cell therapies are now showing tremendous success in hematological cancers. However, the clinical efficacy of CAR T cells in solid tumors remained low, notably due to presence of an immunosuppressive tumor microenvironment (TME). Prostaglandin E2, a bioactive lipid metabolite found within the TME, plays a significant role in promoting cancer progression by increasing tumor proliferation, improving angiogenesis, and impairing immune cell's function. Despite the well-established impact of PGE2 signaling on cancer, its specific effects on CAR T cell therapy remain under investigation. Methods: To address this gap in knowledge the role of PGE2-related genes in cancer tissue and T cells of pancreatic cancer patients were evaluated in-silico. Through our in vitro study, we manufactured fully human functional mesoCAR T cells specific for pancreatic cancer and investigated the influence of PGE2-EP2/EP4 signaling on proliferation, cytotoxicity, and cytokine production of mesoCAR T cells against pancreatic cancer cells. Results: In-silico investigations uncovered a significant negative correlation between PGE2 expression and gene signature of memory T cells. Furthermore, in vitro experiments demonstrated that the activation of PGE2 signaling through EP2 and EP4 receptors suppressed the proliferation and major antitumor functions of mesoCAR T cells. Interestingly, the dual blockade of EP2 and EP4 receptors effectively reversed PGE2-mediated suppression of mesoCAR T cells, while individual receptor antagonists failed to mitigate the PGE2-induced suppression. Discussion: In summary, our findings suggest that mitigating PGE2-EP2/EP4 signaling may be a viable strategy for enhancing CAR T cell activity within the challenging TME, thereby improving the efficacy of CAR T cell therapy in clinical settings.


Assuntos
Dinoprostona , Neoplasias Pancreáticas , Humanos , Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Recidiva Local de Neoplasia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Neoplasias Pancreáticas/terapia , Terapia de Imunossupressão , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Cell Commun Signal ; 21(1): 139, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316886

RESUMO

The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.


Assuntos
Neoplasias Colorretais , Endopeptidases , Humanos , Prognóstico , Biomarcadores , Neoplasias Colorretais/diagnóstico , Microambiente Tumoral
13.
Prog Biophys Mol Biol ; 180-181: 19-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37080435

RESUMO

Natural substances are increasingly being used as cancer treatments. Scutellarin, as a flavonoid, recently has been identified in a Chinese herbal extract called Erigeron breviscapus (Vant.). Scutellarin is being researched for its potential benefits due to the discovery that it possesses a variety of biological effects, such as neuroprotective, anti-bacterial, and anti-viral properties. In addition to these biological functions, scutellarin has also been found to have anti-tumor properties. The underlying mechanisms of scutellarin's anticancer activity involve its ability to inhibit various signaling pathways, such as Jak/STAT, ERK/AMPK, and Wnt/ß-catenin. Additionally, scutellarin activates intrinsic and extrinsic apoptotic pathways, which causes the death of tumor cells, interrupts the cell cycle, and promotes its arrest. By limiting metastasis, angiogenesis, drug resistance, and other tumorigenic processes, scutellarin also reduces the aggressiveness of tumors. Despite its promising anticancer activity, scutellarin faces several challenges in its clinical development, including poor solubility, bioavailability, and pharmacokinetic properties. Therefore, it has been suggested that certain modifications can enhance the pharmacogenetic capabilities of scutellarin to decrease its limited water solubility. In conclusion, scutellarin represents a potential candidate for cancer treatment and further studies are needed to explore its clinical utility and optimize its therapeutic potential.


Assuntos
Neoplasias , Extratos Vegetais , Transdução de Sinais , Apigenina/farmacologia , Apigenina/uso terapêutico , Medicina Tradicional , Neoplasias/tratamento farmacológico
14.
Cell Commun Signal ; 21(1): 57, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915102

RESUMO

BACKGROUND: Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY: According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION: HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Heme Oxigenase-1/metabolismo , Prognóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
15.
Reprod Med Biol ; 22(1): e12509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949822

RESUMO

Purpose: The authors developed nanostructured lipid carriers (NLCs) loaded with sirolimus (SRL) and cyclosporine (CsA) to improve their therapeutic efficacy in recurrent pregnancy loss (RPL) patients. Methods: Mono-delivery and co-delivery of SRL and CsA by NLCs (S-NLCs, C-NLCs, and S-C-NLCs) were developed. The MTT assay was used to study the optimum dose of formulations. PCR, Western blotting, and ELISA were also conducted. Results: Well-designed nanodrugs with a suitable size, zeta potential, desirable encapsulation efficiency drug loading, and cellular uptake confirmed optimum formulations. Based on cell viability, the amounts of SRL and CsA could be reduced greatly due to the co-delivery by NLCs. Following S-NLCs and C-NLCs interventions in T cells of patients with RPL and immune abnormality, a significant difference was observed in transcription factors and cytokine levels of Th1, Th17, and Tregs compared with healthy samples. Thus, a higher level of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-17, and IL-21) and their regulators (T-bet and RORγt), as well as a lower level of an anti-inflammatory cytokine (IL-10) and its regulatory (Foxp3), were observed. However, no significant difference was found following the S-C-NLCs intervention. Conclusions: S-C-NLCs effectively balance the immune responses in peripheral T cells in RPL patients to induce maternal immune tolerance.

16.
Life Sci ; 320: 121525, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841470

RESUMO

AIMS: Vaccination has played an important role in protecting against death and the severity of COVID-19. The recombinant protein vaccine platform has a long track record of safety and efficacy. Here, we fused the SARS-CoV-2 spike S1 subunit to the Fc region of IgG and investigated immunogenicity, reactivity to human vaccinated sera, and neutralizing activity as a candidate protein vaccine. MATERIALS AND METHOD: We evaluated the immunogenicity of CHO-expressed S1-Fc fusion protein and tag-free S1 protein in rabbits via the production of S1-specific polyclonal antibodies. We subsequently compared the neutralizing activities of sera from immunized rabbits and human-vaccinated individuals using a surrogate Virus Neutralization Test (sVNT). KEY FINDINGS: The results indicate that S1-specific polyclonal antibodies were induced in all groups; however, antibody levels were higher in rabbits immunized with S1-Fc fusion protein than tag-free S1 protein. Moreover, the reactivity of human vaccinated sera against S1-Fc fusion protein was significantly higher than tag-free S1 protein. Lastly, the results of the virus-neutralizing activity revealed that vaccination with S1-Fc fusion protein induced the highest level of neutralizing antibody response against SARS-CoV-2. SIGNIFICANCE: Our results demonstrate that the S1 protein accompanied by the Fc fragment significantly enhances the immunogenicity and neutralizing responses against SARS-CoV-2. It is hoped that this platform can be used for human vaccination.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Coelhos , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes , Proteínas Recombinantes
18.
Mol Biol Rep ; 50(1): 173-183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319784

RESUMO

BACKGROUND: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS). METHODS: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted. RESULTS: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs. CONCLUSION: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels.


Assuntos
COVID-19 , Metaloproteinase 9 da Matriz , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Predisposição Genética para Doença , COVID-19/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
19.
IUBMB Life ; 75(3): 257-278, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35848163

RESUMO

The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Leucemia/fisiopatologia , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Reprod Sci ; 30(4): 1186-1197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36155892

RESUMO

The disturbance of maternofetal immune tolerance is identified as one of the important issues in the pathology of preeclampsia (PE). PE exosomes are believed to possess significant roles in immune abnormalities. In this study, to assess the possible effects of PE exosomes in the pathophysiology of preeclampsia patients, exosomes were isolated from the serum of PE patients and incubated with peripheral blood mononuclear cells (PBMCs) of healthy pregnant women. Also, exosomes from healthy pregnant women were utilized as the control. Th17/Treg ratio in PE and healthy pregnant women and the effects of PE exosomes on expression level of Th17 and Treg transcription factors, as well as their related cytokines in PBMCs of healthy pregnant women, were evaluated. A significant decrease in Treg cell number and increase in Th17 cells and Th17/Treg ratio were observed in PE patients. Following PE-exosome intervention, a significant increase in mRNA expression level of RORγt, IL-17, IL-23, IL-1ß, and IL-6, and significant decrease in IL-10 and TGFß were evident. On the other hand, no significant difference in FoxP3 level was detected. Additionally, increased IL-6, IL-17, IL-23, and IL-1ß levels and decreased IL-10 level in the supernatant of cultured PBMCs from healthy pregnant women following PE-exosome intervention were exhibited. However, TGF-ß level did not change significantly. Based on our findings, PE exosomes are able to alter the activity of Th17 and Treg cells as well as their related gene expression and cytokine profiles. These findings support the probable role of PE exosomes in PE pathogenesis.


Assuntos
Exossomos , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Pré-Eclâmpsia/genética , Células Th17 , Gestantes , Leucócitos Mononucleares , Interleucina-6/metabolismo , Linfócitos T Reguladores/metabolismo , Citocinas/metabolismo , Fatores de Transcrição/metabolismo , Interleucina-23/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA