RESUMO
Alkane dehydrogenation is an enabling route to make alkenes useful as chemical intermediates. This study demonstrates the high reactivity of Lewis acid-base (LAB) site pairs at ZrO2 powders for dehydrogenation of C2-C4 alkanes and the essential requirement for chemical treatments to remove strongly bound H2O and CO2 titrants to avoid the high temperatures required for their desorption and the concomitant loss of active sites through sintering and annealing of ZrO2 crystallites. The energies and free energies of bound intermediates and transition states from density functional theory (DFT), taken together with kinetic analysis and isotopic methods, demonstrated the kinetic relevance and heterolytic character of the first C-H activation at terminal C-atoms for all alkanes with a modest activation barrier (84 kJ mol-1) at essentially bare Zr-O LAB site pairs. ß-Hydride elimination from the formed alkyl carbanions lead to their desorption as alkene products in steps that are favored over their parallel C-C cleavage reactions (by 100 kJ mol-1), leading to high dehydrogenation selectivities (>98%) at the temperatures required for practical yields in such endothermic dehydrogenation reactions (700-900 K). The facile recombination of bound proton-hydride pairs then completes a dehydrogenation turnover. These findings provide compelling evidence for the remarkable reactivity and selectivity of LAB sites on earth-abundant oxides and for the need to uncover them through chemical treatments, which combine to give gravimetric dehydrogenation rates that exceed those on the toxic (Cr) or costly (Pt) catalysts used in practice.
RESUMO
Developing a desirable ethanol dehydrogenation process necessitates a highly efficient and selective catalyst with low cost. Herein, we show that the "complex active site" consisting of atomically dispersed Au atoms with the neighboring oxygen vacancies (Vo) and undercoordinated cation on oxide supports can be prepared and display unique catalytic properties for ethanol dehydrogenation. The "complex active site" Au-Vo-Zr3+ on Au1/ZrO2 exhibits the highest H2 production rate, with above 37,964â mol H2 per mol Au per hour (385â g H2 g Au - 1 ${{\rm{g}}_{{\rm{Au}}}^{ - 1} }$ h-1) at 350 °C, which is 3.32, 2.94 and 15.0â times higher than Au1/CeO2, Au1/TiO2, and Au1/Al2O3, respectively. Combining experimental and theoretical studies, we demonstrate the structural sensitivity of these complex sites by assessing their selectivity and activity in ethanol dehydrogenation. Our study sheds new light on the design and development of cost-effective and highly efficient catalysts for ethanol dehydrogenation. Fundamentally, atomic-level catalyst design by colocalizing catalytically active metal atoms forming a structure-sensitive "complex site", is a crucial way to advance from heterogeneous catalysis to molecular catalysis. Our study advanced the understanding of the structure sensitivity of the active site in atomically dispersed catalysts.
RESUMO
Ni-based solids are effective catalysts for alkene dimerization, but the nature of active centers and identity and kinetic relevance of bound species and elementary reactions remain speculative and based on organometallic chemistry. Ni centers grafted onto ordered MCM-41 mesopores lead to well-defined monomers that are rendered stable by the presence of an intrapore nonpolar liquid, thus enabling accurate experimental inquiries and indirect evidence for grafted (Ni-OH)+ monomers. Density functional theory (DFT) treatments presented here confirm the plausible involvement of pathways and active centers not previously considered as mediators of high turnover rates for C2-C4 alkenes at cryogenic temperatures. (Ni-OH)+ species act as Lewis acid-base pairs that stabilize C-C coupling transition states by polarizing two alkenes in opposite directions via concerted interactions with the O and H atoms in these pairs. DFT-derived activation barriers for ethene dimerization (59 kJ mol-1) are similar to measured values (46 ± 5 kJ mol-1) and the weak binding of ethene on (Ni-OH)+ is consistent with kinetic trends that require sites to remain essentially bare at subambient temperatures and high alkene pressures (1-15 bar). DFT treatments of classical metallacycle and Cossee-Arlman dimerization routes (Ni+ and Ni2+-H grafted onto Al-MCM-41, respectively) show that such sites bind ethene strongly and lead to saturation coverages, in contradiction with observed kinetic trends. These C-C coupling routes at acid-base pairs in (Ni-OH)+ differ from molecular catalysts in (i) the type of elementary steps; (ii) the nature of active centers; and (iii) their catalytic competence at subambient temperatures without requiring co-catalysts or activators.
RESUMO
Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only â¼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.
RESUMO
The effects of water on the carboxylic acid ketonization reaction over solid Lewis-acid catalysts were examined by nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), temperature-programmed desorption (TPD), and kinetic measurements. Acetic acid and propanoic acid were used as model compounds, and P25 TiO2 was used as a model catalyst to represent the anatase TiO2 since the rutile phase only contributes to <2.5% of the overall ketonization activity of P25 TiO2. The kinetic measurement showed that introducing H2O vapor in gaseous feed decreases the ketonization reaction rate by increasing the intrinsic activation barrier of gas-phase acetic acid on anatase TiO2. Quantitative TPD of acetic acid indicated that H2O does not compete with acetic acid for Lewis sites. Instead, as indicated by combined approaches of NMR and DRIFTS, H2O associates with the adsorbed acetate or acetic acid intermediates on the catalyst surface and alters their reactivities for the ketonization reaction. There are multiple species present on the anatase TiO2 surface upon carboxylic acid adsorption, including molecular carboxylic acid, monodentate carboxylate, and chelating/bridging bidentate carboxylates. The presence of H2O vapor increases the coverage of the less reactive bridging bidentate carboxylate associated with adsorbed H2O, leading to lower ketonization activity on hydrated anatase TiO2. Surface hydroxyl groups, which are consumed by interaction with carboxylic acid upon the formation of surface acetate species, do not impact the ketonization reaction.
Assuntos
Ácidos Carboxílicos , Água , Água/química , Titânio/química , Ácido Acético/química , GasesRESUMO
Cu/zeolites efficiently catalyze selective reduction of environmentally harmful nitric oxide with ammonia. Despite over a decade of research, the exact NO reduction steps remain unknown. Herein, using a combined spectroscopic, catalytic and DFT approach, we show that nitrosyl ions (NO+) in zeolitic micropores are the key intermediates for NO reduction. Remarkably, they react with ammonia even below room temperature producing molecular nitrogen (the reaction central to turning the NO pollutant to benign nitrogen) through the intermediacy of the diazo N2H+ cation. Experiments with isotopically labeled N-compounds confirm our proposed reaction path. No copper is required for N2 formation to occur during this step. However, at temperatures below 100 °C, when NO+ reacts with NH3, the bare Brønsted acid site becomes occupied by NH3 to form strongly bound NH4 +, and consequently, this stops the catalytic cycle, because NO+ cannot form on NH4-zeolites when their H+ sites are already occupied by NH4 +. On the other hand, we show that the reaction becomes catalytic on H-zeolites at temperatures when some ammonia desorption can occur (>120 °C). We suggest that the role of Cu(ii) ions in Cu/zeolite catalysts for low-temperature NO reduction is to produce abundant NO+ by the reaction: Cu(ii) + NO â Cu(i)â¯NO+. NO+ then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(i) gets re-oxidized, the catalytic cycle can then continue. Our findings provide novel understanding of the hitherto unknown steps of the SCR mechanism pertinent to N-N coupling. The observed chemistry of Cu ions in zeolites bears striking resemblance to the copper-containing denitrification and annamox enzymes, which catalyze transformation of NO x species to N2, via di-azo compounds.
RESUMO
Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2 and Zn(TFSI)2 dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+ and Zn2+ solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+ relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.
RESUMO
Steamed zeolites exhibit improved catalytic properties for hydrocarbon activation (alkane cracking and dehydrogenation). The nature of this practically important phenomenon has remained a mystery for the last six decades and was suggested to be related to the increased strength of zeolitic Bronsted acid sites after dealumination. We now utilize state-of-the-art infrared spectroscopy measurements and prove that during steaming, aluminum oxide clusters evolve (due to hydrolysis of Al out of framework positions with the following clustering) in the zeolitic micropores with properties very similar to (nano) facets of hydroxylated transition alumina surfaces. The Bronsted acidity of the zeolite does not increase and the total number of Bronsted acid sites decreases during steaming. O5Al(VI)-OH surface sites of alumina clusters dehydroxylate at elevated temperatures to form penta-coordinate Al1O5 sites that are capable of initiating alkane cracking by breaking the first C-H bond very effectively with much lower barriers (at lower temperatures) than for protolytic C-H bond activation, with the following reaction steps catalyzed by nearby zeolitic Bronsted acid sites. This explains the underlying mechanism behind the improved alkane cracking and alkane dehydrogenation activity of steamed zeolites: heterolytic C-H bond breaking occurs on Al-O sites of aluminum oxide clusters confined in zeolitic pores. Our findings explain the origin of enhanced activity of steamed zeolites at the molecular level and provide the missing understanding of the nature of extra-framework Al species formed in steamed/dealuminated zeolites.
RESUMO
Pd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. The NO release temperature of both adsorbers decreases gradually with an increase in CO concentration from a few hundred to a few thousand ppm. This beneficial effect results from local nano-"hot spot" formation during CO oxidation. Dissimilar to Pd/SSZ-13, increasing the CO concentration above ≈1000â ppm improves the NOx storage significantly for Pd/FER, which was attributed to the presence of Pd ions in FER sites that are shielded from NOx. CO mobilizes this Pd atom to the NOx accessible position where it becomes active for PNA. This behavior explains the very high resistance of Pd/FER to hydrothermal aging: Pd/FER materials survive hydrothermal aging at 800 °C in 10 % H2 O vapor for 16â hours with no deterioration in NOx uptake/release behavior. Thus, by allocating Pd ions to the specific microporous pockets in FER, we have produced (hydro)thermally stable and active PNA materials.
RESUMO
CO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO2. Among them, few systems, such as Au/TiO2, can perform CO oxidation at temperatures as low as -70 °C. Living (an)aerobic organisms perform CO oxidation with nitrate using complex enzymes under ambient temperatures representing an essential pathway for life, which enables respiration in the absence of oxygen and leads to carbonate mineral formation. Herein, we report that CO can be oxidized to CO2 by nitrate at -140 °C within an inorganic, nonmetallic zeolitic system. The transformation of NOx and CO species in zeolite as well as the origin of this unique activity is clarified using a joint spectroscopic and computational approach.
RESUMO
Water plays pivotal roles in tailoring reaction pathways in many important reactions, including cascade C-C bond formation and oxygen elimination. Herein, a kinetic study combined with complementary analyses (DRIFTS, isotopic study, 1H solid-state magic angle spinning nuclear magnetic resonance) and density functional theory (DFT) calculations are performed to elucidate the roles of water in cascade acetone-to-isobutene reactions on a Zn x Zr y O z mixed metal oxide with balanced Lewis acid-base pairs. Our results reveal that the reaction follows the acetone-diacetone alcohol-isobutene pathway. Isobutene is produced through an intramolecular rearrangement of the eight-membered ring intermediate formed via the adsorption of diacetone alcohol on the Lewis acid-base pairs in the presence of cofed water. OH adspecies, formed by the dissociative adsorption of water on the catalyst surface, were found to distort diacetone alcohol's hydroxyl functional group toward its carbonyl functional group and facilitate the intramolecular rearrangement of diacetone alcohol to form isobutene. In the absence of water, diacetone alcohol binds strongly to the Lewis acid site, e.g., at a Zr4+ site, via its carbonyl functional group, leading to its dramatic structural distortion and further dehydration reaction to form mesityl oxide as well as subsequent polymerization reactions and the formation of coke. The present results provide insights into the cooperative roles of water and Lewis acid-base pairs in catalytic upgrading of biomass to fuels and chemicals.
RESUMO
Aldol condensations of carbonyl compounds for C-C bond formation are a very important class of reactions in organic synthesis and upgrading of biomass-derived feedstocks. However, the atomic level understanding of reaction mechanisms and structure-activity correlation on widely used transition metal oxide catalysts are limited due to the high degree of structural heterogeneity of catalysts such as commercial TiO2 powders. Here, we provide a deep understanding of the reaction mechanisms, kinetics, and structure-function relationships for vapor phase acetone aldol condensation through the controlled synthesis of two catalysts with high surface areas and clean, dominant facets, coupled with detailed characterization and kinetic studies that are further assisted by density functional theory (DFT) calculations. Temperature-dependent diffuse reflectance infrared Fourier transform spectroscopy showed the existence of abundant acetone bonded to surface hydroxyl groups (acetone-OsH) and acetone bonded to Lewis acid sites (acetone-Ti5c) on the surface of both {101} and {001} facet dominant TiO2. Intermolecular C-C coupling of theenolate intermediate from acetone-Ti5c and a vicinal acetone-OsH is a kinetically relevant step, which is consistent with kinetic and isotopic studies as well as DFT calculations. The {001} facet showed a lower apparent activation energy (or higher activity) than the {101} facet. This is likely caused by the weaker Lewis acid and Brønsted base strengths of the {001} facet which favors the reprotonation-desorption of the coupled intermediate, making the C-C coupling step more exothermic on the {001} facet and resulting in an earlier transition state with a lower activation barrier. It is also possible that the {001} facet has a smoother surface configuration and less steric hindrance during intermolecular C-C bond formation than the {101} facet.
RESUMO
Electronic cigarette usage has spiked in popularity over recent years. The enhanced prevalence has consequently resulted in new health concerns associated with the use of these devices. Degradation of the liquids used in vaping have been identified as a concern due to the presence of toxic compounds such as aldehydes in the aerosols. Typically, such thermochemical conversions are reported to occur between 300 and 400 °C. Herein, the low-temperature thermal degradation of propylene glycol and glycerol constituents of e-cigarette vapors are explored for the first time by natural abundance 13C NMR and 1H NMR, enabling in situ detection of intact molecules from decomposition. The results demonstrate that the degradation of electronic nicotine delivery system (ENDS) liquids is strongly reliant upon the oxygen availability, both in the presence and absence of a material surface. When oxygen is available, propylene glycol and glycerol readily decompose at temperatures between 133 and 175 °C over an extended time period. Among the generated chemical species, formic and acrylic acids are observed which can negatively affect the kidneys and lungs of those who inhale the toxin during ENDS vapor inhalation. Further, the formation of hemi- and formal acetals is noted from both glycerol and propylene glycol, signifying the generation of both formaldehyde and acetaldehyde, highly toxic compounds, which, as a biocide, can lead to numerous health ailments. The results also reveal a retardation in decomposition rate when material surfaces are prevalent with no directly observed unique surface spectator or intermediate species as well as potentially slower conversions in mixtures of the two components. The generation of toxic species in ENDS liquids at low temperatures highlights the dangers of low-temperature ENDS use.
Assuntos
Administração por Inalação , Aldeídos/química , Sistemas Eletrônicos de Liberação de Nicotina , Temperatura , Vaping/efeitos adversos , HumanosRESUMO
γ-alumina is one of the oldest and most important commercial catalytic materials with high surface area and stability. These attributes enabled its use as the first commercial large-scale heterogeneous catalyst for ethanol dehydration. Despite progress in materials characterization the nature of the specific sites on the surface of γ-alumina that are responsible for its unique catalytic properties has remained obscure and controversial. By using combined infrared spectroscopy, electron microscopy and solid-state nuclear magnetic resonance measurements we identify the octahedral, amphoteric (O)5 Al(VI)-OH sites on the (100) segments of massively restructured (110) facets on typical rhombus-platelet γ-alumina as well as the (100) segments of irrational surfaces (invariably always present in all γ-alumina samples) responsible for its unique catalytic activity. Such (O)5 Al(VI)-OH sites are also present on the macroscopically defined (100) facets of γ-alumina with elongated/rod-like geometry. The mechanism by which these sites lose -OH groups upon thermal dehydroxylation resulting in coordinatively unsaturated penta-coordinate Al+3 O5 sites is clarified. These coordinatively unsaturated penta-coordinate Al sites produce well-defined thermally stable Al-carbonyl complexes. Our findings contribute to the understanding of the nature of coordinatively unsaturated Al sites on the surface of γ-alumina and their role as catalytically active sites.
RESUMO
Herein, a detailed analysis was carried out using high-field (19.9 T) 27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) on three specially prepared aluminum oxide samples where the γ-, δ-, and θ-Al2O3 phases are dominantly expressed through careful control of the synthesis conditions. Specifically, two-dimensional (2D) multiquantum (MQ) MAS 27Al was used to obtain high spectral resolution, which provided a guide for analyzing quantitative 1D 27Al NMR spectra. Six aluminum sites were resolved in the 2D MQ MAS NMR spectra, and seven aluminum sites were required to fit the 1D spectra. A set of octahedral and tetrahedral peaks with well-defined quadrupolar line shapes was observed in the θ-phase dominant sample and was unambiguously assigned to the θ-Al2O3 phase. The distinct line shapes related to the θ-Al2O3 phase provided an opportunity for effectively deconvoluting the more complex spectrum obtained from the δ-Al2O3 dominant sample, allowing the peaks/quadrupolar parameters related to the δ-Al2O3 phase to be extracted. The results show that the δ-Al2O3 phase contains three distinct AlO sites and three distinct AlT sites. This detailed Al site structural information offers a powerful way of analyzing the most complex γ-Al2O3 spectrum. It is found that the γ-Al2O3 phase consists of Al sites with local structures similar to those found in the δ-Al2O3 and θ-Al2O3 phases albeit with less ordering. Spin-lattice relaxation time measurement further confirms the disordering of the lattice. Collectively, this study uniquely assigns 27Al features in transition aluminas, offering a simplified method to quantify complex mixtures of aluminum sites in transition alumina samples.
RESUMO
We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high-temperature atom-trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1â wt % Rh1 /CeO2 achieve full NO conversion with a turn-over-frequency (TOF) of around 330â h-1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2 O being the minor product. The presence of water promotes low-temperature activity of 0.1â wt % Rh1 /CeO2 . In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.
RESUMO
Nuclear magnetic resonance (NMR) spectroscopy represents an important technique to understand the structure and bonding environments of molecules. There exists a drive to characterize materials under conditions relevant to the chemical process of interest. To address this, in situ high-temperature, high-pressure MAS NMR methods have been developed to enable the observation of chemical interactions over a range of pressures (vacuum to several hundred bar) and temperatures (well below 0 °C to 250 °C). Further, the chemical identity of the samples can be comprised of solids, liquids, and gases or mixtures of the three. The method incorporates all-zirconia NMR rotors (sample holder for MAS NMR) which can be sealed using a threaded cap to compress an O-ring. This rotor exhibits great chemical resistance, temperature compatibility, low NMR background, and can withstand high pressures. These combined factors enable it to be utilized in a wide range of system combinations, which in turn permit its use in diverse fields as carbon sequestration, catalysis, material science, geochemistry, and biology. The flexibility of this technique makes it an attractive option for scientists from numerous disciplines.
Assuntos
Espectroscopia de Ressonância Magnética , Pressão , Temperatura , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catálise , Hidrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , ZircônioRESUMO
High-temperature treatment of γ-Al2 O3 can lead to a series of polymorphic transformations, including the formation of δ-Al2 O3 and θ-Al2 O3 . Quantification of the microstructure in the range where δ- and θ-Al2 O3 are formed represents a formidable challenge, as both phases accommodate a high degree of structural disorder. In this work, we explore the use of an XRD recursive-stacking formalism for the quantification of high-temperature transition aluminas. We formulate the recursive-stacking methodology for modelling of disorder in δ-Al2 O3 and twinning in θ-Al2 O3 and show that explicitly accounting for the disorder is necessary to reliably model the XRD patterns of high-temperature transition alumina. We also use the recursive stacking approach to study phase transformation during high-temperature (1050 °C) treatment. We show that the two different intergrowth modes of δ-Al2 O3 have different transformation characteristics and that a significant portion of δ-Al2 O3 is stabilized with θ-Al2 O3 even after prolonged high-temperature exposures.
RESUMO
One of the main impediments faced for predicting emergent properties of a multivalent electrolyte (such as conductivity and electrochemical stability) is the lack of quantitative analysis of ion-ion and ion-solvent interactions, which manifest in solvation structures and dynamics. In particular, the role of ion-solvent interactions is still unclear in cases where the strong electric field from multivalent cations can influence intramolecular rotations and conformal structural evolution (i.e., solvent rearrangement process) of low permittivity organic solvent molecules on solvation structure. Using quantitative 1H, 19F, and 17O NMR together with 19F nuclear spin relaxation and diffusion measurments, we find an unusual correlation between ion concentration and solvation structure of Mg(TFSI)2 salt in dimethoxyethane (DME) solution. The dominant solvation structure evolves from contact ion pairs (i.e., [Mg(TFSI)(DME)1-2]+) to fully solvated clusters (i.e., [Mg(DME)3]2+) as salt concentration increases or as temperature decreases. This transition is coupled to a phase separation, which we study here between 0.06 and 0.36 M. Subsequent analysis is based on an explanation of the solvent rearrangement process and the competition between solvent molecules and TFSI anions for cation coordination.
RESUMO
Water is an important constituent in an abundant number of chemical systems; however, its presence complicates the analysis of in situ 1H MAS NMR investigations due to water's ease of solidification and vaporization, the large changes in mobility, affinity for hydrogen bonding interactions, etc., that are reflected by dramatic changes in temperature-dependent chemical shielding. To understand the evolution of the signatures of water and other small molecules in complex environments, this work explores the thermally-perturbed NMR properties of water in detail by in situ MAS NMR over a wide temperature range. Our results substantially extend the previously published temperature-dependent 1H and 17O chemical shifts, linewidths, and spin-lattice relaxation times over a much wider range of temperatures and with significantly enhanced thermal resolution. The following major results are obtained: Hydrogen bonding is clearly shown to weaken at elevated temperatures in both 1H and 17O spectra, reflected by an increase in chemical shielding. At low temperatures, transient tetrahedral domains of H-bonding networks are evidenced and the observation of the transition between solid ice and liquid is made with quantitative considerations to the phase change. The 1H chemical shift properties in other small polar and non-polar molecules have also been described over a range of temperatures, showing the dramatic effect hydrogen bonding perturbation on polar species. Gas phase species are observed and chemical exchange between gas and liquid phases is shown to play an important role on the observed NMR shifts. The results disclosed herein lay the foundation for a clear interpretation of complex systems during the increasingly popular in situ NMR characterization at elevated temperatures and pressures for studying chemical systems.