Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38761210

RESUMO

Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.

2.
Heliyon ; 10(8): e29246, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638985

RESUMO

Thyme oil (TO) is a valuable essential oil believed to possess a variety of bioactivities, including antibacterial, anticancer, and antioxidant properties. These attributes grant TO the excellent capability to treat a wide range of diseases, particularly the effective eradication of Helicobacter pylori infection in the stomach. However, its practical use is limited by its low stability under atmospheric conditions. Our current research aims to encapsulate TO in eudragit (EGT) microsponges to enhance its stability and improve its effectiveness against H. pylori. The TO microsponges were prepared using EGT as a polymer, polysorbate 80 as a stabilizer, and dichloromethane (DCM) as a solvent via the quasi-emulsion solvent evaporation method. The product yield, particle size, surface morphology, entrapment efficiency, drug-polymer interaction, in-vitro floating, and in-vitro drug release of the microsponges were evaluated. The most promising microsponge was tested against H. pylori ATCC 43504 strains. The results showed that the microsponges exhibited a high product yield (ranging from 41 % ± 0.75-81.27 % ± 1.13), excellent entrapment efficiency (ranging from 63.01 % ± 0.79-88.64 % ± 0.98), prolonged in-vitro floating time (more than 12 h) and sustained in-vitro drug release for 18 h (81.53 %). Scanning electron microscopy results indicated that the microsponges were spherical in shape with a spongy surface. The average particle size of the selected microsponges was determined to be 49.79 ± 1.4 µm, and their average pore size was measured to be 0.81 ± 0.14 µm. DSC study results revealed that TO was physically entrapped in the microsponges. In-vitro anti-H. pylori activity studies demonstrated that TO in microsponge was more effective against H. pylori than pure TO. In conclusion, the developed microsponges containing thyme oil provide a promising alternative for the efficient targeting and eradication of H. Pylori infection.

3.
ACS Omega ; 9(10): 11820-11828, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497016

RESUMO

We presented the results of various aspects related to structural, elastic, electronic, dynamic, and magnetic parameters of cubic perovskite CeCrO3 by means of the full-potential linearized augmented plane wave (FP-LAPW) approach. The calculation of the unit cell volume against the total energy curve confirms that CeCrO3 exhibits higher energetic stability in the ferromagnetic (FM) order. Calculated structural aspects at equilibrium demonstrate excellent similarity to present information, lending credibility to our results. Moreover, monocrystalline elastic constants have been analyzed numerically. These constants provide insights into several related properties, including elastic anisotropy, mechanical stability, and several polycrystalline elastic aspects. Furthermore, the phonon dispersion curves obtained from our calculations reveal the existence of soft modes, which suggests the potential metastability of CeCrO3. Through an analysis of the energy band dispersions, the half-metallic nature of this material is confirmed, such as Eg = 3.00 and 3.13 eV for the HM state within generalized gradient approximations Perdew-Burke-Ernzerhof (GGA-PBE) and Tran-Blaha modified Becke-Johnson (TB-mBJ) calculations, respectively, as well as the FM total magnetic moment of 4.000 µB. Partial density of states (PDOS) aided in identifying the electronic states that contribute to the energy bands. Finally, the computed total magnetic moment aligns fit the theoretical findings available in the literature.

4.
Saudi Pharm J ; 32(3): 101984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384476

RESUMO

Current research focuses on explicitly developing and evaluating nanostructured lipidic carriers (NLCs) for the chemotherapeutic drug Ribociclib (RCB) via the topical route to surmount the inherent bioavailability shortcomings. The absolute oral bioavailability has not been determined, but using a physiologically based pharmacokinetic model it was predicted that 65.8 % of the standard dose of RCB (600 mg) would be absorbed mainly in the small intestine. RCB-NLCs were produced using the solvent evaporation method, and Box-Behnken Design (BBD) was employed to optimize composition. The prepared NLCs had an average PS of 79.29 ± 3.53 nm, PDI of 0.242 ± 0.021, and a %EE of 86.07 ± 3.14. The TEM analysis disclosed the spherical form and non-aggregative nature of the NLCs. The outcomes of an in-vitro release investigation presented cumulative drug release of 84.97 ± 3.37 % in 24 h, significantly higher than that from the RCB suspension (RCB-SUS). Ex-vivo skin permeation investigations on rodent (Swiss albino mice) revealed that RCB-NLCs have 1.91 times increases in skin permeability comparable to RCB-SUS. Compared to RCB-SUS, RCB-NLCs were able to penetrate deeper into the epidermis membrane than RCB-SUS as per the findings of confocal microscopy. In dermatokinetic study, higher amount of RCB was maintained in both the layers of mice's skin when treated with RCB-NLCs gel comparable to the RCB-SUS gel preparation. The in-vitro, ex-vivo, CLSM, and dermatokinetics data demonstrated a significant possibility for this novel RCB formulation to be effective against skin cancer.

5.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508253

RESUMO

Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.

6.
Saudi Pharm J ; 31(5): 659-668, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181149

RESUMO

The goal of the present work was to invent an apigenin-stacked gastroretentive microsponge to target H. pylori. The quasi-emulsion technique was used to prepare microsponges, which were then tested for various physicochemical properties, in-vivo gastric retention, and in-vitro anti-H. pylori study. The microsponge that demonstrated a comparatively good product yield (76.23 ± 0.84), excellent entrapment efficiency (97.84 ± 0.85), sustained in-vitro gastric retention period, and prolonged drug release were chosen for further investigations. The microsponge's SEM analysis showed that it had a spherical form, porous surface, and interconnected spaces. No drug-polymer interactions were detected in the FTIR investigation. Apigenin was found to be dispersed in the microsponge's polymeric matrix according to DSC & XRD investigations. Moreover, the microsponge in the rat's stomach floated for 4 h, according to the ultrasonography. The antibacterial activity of apigenin against H. pylori was nearly two folds more than the pure apigenin and had a more sustained release in the best microsponge, according to the in vitro MIC data, when compared to pure apigenin. To sum up, the developed gastroretentive microsponge with apigenin offers a viable alternative for the efficient targeting of H. pylori. But more preclinical & clinical studies of our best microsponge would yield considerably more fruitful results.

7.
Polymers (Basel) ; 15(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111972

RESUMO

This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.

8.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566099

RESUMO

Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.


Assuntos
Esomeprazol , Úlcera , Administração Cutânea , Disponibilidade Biológica , Portadores de Fármacos , Liberação Controlada de Fármacos , Esomeprazol/farmacologia , Humanos , Tamanho da Partícula
9.
AAPS PharmSciTech ; 23(2): 71, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146576

RESUMO

The current investigation was performed with an aim to improve the aqueous solubility, dissolution rate, and thus the biological activity of apigenin (APG) using the solubilizers hydroxypropyl beta-cyclodextrin (HPßCD) and chitosan (CTSN). A binary and ternary inclusion complexes of APG with HPßCD and CTSN were prepared by physical mixing, fusion, and solvent evaporation methods. The liquid state characterization of the APG, the solubilizers, and the physical and chemical interactions between them was done through phase solubility approach. The solid-state characterization was performed by proton nuclear magnetic resonance (1H-NMR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). The in vitro dissolution test and antioxidant activity and in vivo anti-inflammatory activity of the ternary inclusion complex in albino rats were performed to assess the performance of the APG. Phase solubility study results revealed a remarkable increase in apparent stability constant (Kc) and complexation efficiency (CE) of HPßCD in presence of CTSN in ternary complex with above 8 folds more increment in solubility of APG than its binary complex. The in vitro dissolution rate, antioxidant activity, and the anti-inflammatory effect of the APG ternary inclusion complex were found to be significantly higher than that of pure APG. Solid state characterization confirmed the formation of a ternary inclusion complex. 1H-NMR study gave more insight at molecular level into how different groups of APG were responsible for complex formation with the HPßCD and how CTSN was significantly influencing on the APG-HPßCD complex formed. Nevertheless, pharmacokinetic and histopathological studies of our APG-HPßCD-CTSN ternary complex would yield much rewarding results.


Assuntos
Quitosana , Ciclodextrinas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Apigenina , Varredura Diferencial de Calorimetria , Solubilidade , Difração de Raios X , Animais , Ratos
10.
Gels ; 9(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36661789

RESUMO

The current study aimed to prepare a topical gel containing solid lipid nanoparticles (SLNs) encapsulating fluoxetine for diabetic wound healing effects. Fluoxetine (FX) was loaded into SLNs by employing an emulsion solvent evaporation technique using stearic acid as a lipid, and soya lecithin as a surfactant. SLNs were then evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), percent entrapment efficiency (%EE), percent drug loading (%DL), and in vitro drug release. The optimized SLN (FS3) composed of FX (100 mg), SA (150 mg), and SA (100 mg) displayed mean particle size (467.3 ± 2.2nm), PDI (0.435 ± 0.02), ZP (-32.2 ± 4.47mV), EE (95.8 ± 3.38%), and DL (16.4 ± 2.4%). FTIR and DSC studies denote drug-polymer compatibility and the amorphous nature of FX in the SLNs. The drug release at 24 h was found to be (98.89 ± 2.57%) which followed the fickian diffusion mechanism. SLN (FS3) was further loaded into carbopol gel and tested for pH, spreadability, and extrudability of pharmaceutical parameters. In-vitro release of FX from the SLN gel and plain gel was compared, diabetic wound healing gel (DWH) showed sustained drug delivery. An in vivo study was also performed for DWH gel in streptozotocin-induced diabetic rats. Histopathological examination exhibited DWH gel-treated wounds have increased hydroxyproline, cellular proliferation, a rise in the number of blood vessels, and the level of collagen synthesis. Thus, DWH gel-loaded SLN encapsulated with FX could be a potential carrier for the effective treatment and management of diabetic wounds.

11.
Pharmaceutics ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959375

RESUMO

The current study aimed to develop a luteolin gastric floating microsponge for targeting Helicobacter pylori. The microsponge formulations were prepared by a quasi-emulsion method, and then evaluated for various physicochemical variables. The best microsponge was further assessed for drug-polymer interactions, surface morphology, in vivo floating, and in vitro anti H. pylori activity. The formulation which exhibited comparatively good production yield (64.45% ± 0.83), high entrapment efficiency (67.33% ± 3.79), prolonged in vitro floating time (>8 h), and sustained in-vitro drug release was selected as the best microsponge. The SEM study revealed that the best microsponge was spherical in shape and has a porous surface with interconnecting channels. DSC and XRD studies demonstrated the dispersion of luteolin in the polymeric matrix of the microsponge. Ultrasonography confirmed that the best microsponge could in the rat stomach for 4 h. The in vitro MIC results indicate that the anti H. pylori activity of the best microsponge was almost doubled and more sustained compared to pure luteolin. To conclude, it can be said that the developed luteolin gastric floating microsponge could be a better option to effectively eradicate H. pylori infections and the histopathological and pharmacodynamic assessments of our best microsponge can be expected to provide a rewarding outcome.

12.
Biomolecules ; 11(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944534

RESUMO

There is a need for new antimicrobial systems due to increased global resistance to current antimicrobials. Pomegranate rind extract (PRE) and Zn (II) ions both possess a level of antimicrobial activity and work has previously shown that PRE/Zn (II) in combination possesses synergistic activity against Herpes simplex virus and Micrococcus luteus. Here, we determined whether such synergistic activity extended to other, more pathogenic, bacteria. Reference strains of methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were cultured and subjected to challenge by PRE, Zn (II), or PRE + Zn (II), in time-kill assays. Data were obtained independently by two researchers using different PRE preparations. Statistically significant synergistic activity for PRE + Zn (II) was shown for all four bacterial strains tested compared to untreated controls, although the extent of efficacy and timescales varied. Zn (II) exerted activity and at 1 h, it was not possible to distinguish with PRE + Zn (II) combination treatment in all cases. PRE alone showed low activity against all four bacteria. Reproducible synergistic bactericidal activity involving PRE and Zn (II) has been confirmed. Potential mechanisms are discussed. The development of a therapeutic system that possesses demonstrable antimicrobial activity is supported which lends itself particularly to topical delivery applications, for example MRSA infections.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Punica granatum/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Zinco/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
13.
Pharmaceutics ; 13(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834169

RESUMO

The objective of this study was to synthesize silver nanoparticles from the leaves of Tridax procumbens and develop its topical gels using chitosan to investigate the wound healing efficacy concomitant with the histopathological study. Green synthesized silver nanoparticles (AgNPs) were prepared by reacting silver nitrate (0.3 M) with leaf extract and characterized by particle analysis, FTIR, XRD, SEM, BET, and TGA. The results revealed formed AgNPs were nano-sized (138 ± 2.1 nm), monodispersed (PDI: 0.460 ± 0.3), inter-particle repulsion (zeta: -20.4 ± 5.20 mV), stabilized, crystalline and, spherical with size ranging from 80-100 nm as per SEM micro photos. The BET analysis of AgNPs presents the surface area (12.861 m2/g), pore volume (0.037 cc/g), and pore radius (24.50 nm).TGA results show a loss of 13.39% up to 300 °C. The topical formulation was developed by loading AgNPs in chitosan-based gels, evaluated by pH, thermal cycling, centrifugal, and spreadability tests. AgNPs chitosan gels results showed skin compatibility, higher stability, and spreading ability. The maximum antibacterial zone of inhibition was found to be 25 ± 0.98 mm for bacillus subtitles and 30 ± 1.99 mm for Klebsiella pneumoniae, respectively. Nanosilver-containing gel also showed excellent compatibility with erythrocytes. Excision wound model was used to assess the wound healing property of the developed AgNP gels, the results of which indicated a significantly progressive healing process in test-group of animals treated with chitosan-based gels containing AgNPs. A histopathological study further confirmed the almost normal skin structure of treated animal tissue compared to standard and negative control. Thus, green synthesized AgNPs loaded chitosan-based topical gel can potentially be used for wound healing application.

14.
Transfus Apher Sci ; 60(3): 103109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33752990

RESUMO

Unusual Rh phenotypes such as Rhnull, D-- and Dc- etc. are rarely encountered in routine blood bank testing. The Rhnull phenotype is characterized by the absence of all Rh antigens, D-- phenotype does not express any RhCcEe antigens whereas Dc- phenotype individual lacks expression of antithetical E /e antigens. These individuals may produce multiple Rh antibodies against missing antigens. An old woman (B RhD positive) from Bangladesh with end-stage renal disease developed severe anaemia. Cross-matching with ABO and RhD compatible blood units showed +3 agglutination reaction. Detailed immunohaematological investigations showed a lack of C, E and e antigens, thus identifying the rare Rh variant as Dc-. Antibodies against C and e antigens were also detected in the patient's serum. PCR-SSP confirmed the absence of the molecular region defining the C, E and e antigens. Copy number analysis by QMPSF revealed the homozygous state of (RHCE-D(4-9)-CE) allele at the RHCE gene locus. This is the first report of the rare Dc- variant individual from the Indian subcontinent.


Assuntos
Sistema do Grupo Sanguíneo Rh-Hr/genética , Feminino , Humanos , Índia , Pessoa de Meia-Idade , Fenótipo
15.
Curr Drug Metab ; 22(4): 263-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33305703

RESUMO

BACKGROUND: Form last few decades, nanoparticles have witnessed breakthroughs in the treatment of neurological disorders due to their unique physiochemical properties, which make them an effective drug delivery system. However, there is not much information available on the toxicity of nanoparticles in neuronal disorders. The toxic effect of nanoparticles on brain disorders and their regulatory issues are the primary concerns of the healthcare industry. METHODS: A strategical literature search was performed on various bibliographic databases such as Scopus, PubMed, SciFinder, Google Scholar, Medline, Google Patent, Derwent Innovation, and Orbit Intelligence for retrieval of peer-reviewed articles and patents on regulatory issues and toxicity of nanoparticles in neuronal disorders for last decade. The relevant hits of articles and patents were analyzed, and citation search for the relevant documents was carried out. RESULTS: The literature documents have been summarized regarding the existing regulatory issues and toxicity of nanoparticles on neuronal disorders with a focus on the detailed mechanism of the developmental toxicity of nanoparticles. The focus of this report is to emphasize the negative effects of nanoparticle on neuronal disorders, which may partially contribute to the management of toxicity of nanoparticles. CONCLUSION: Although nanoparticles have unique physical and chemical properties that explain the broad range of application for the central nervous system, they can also manifest neurotoxic effects due to cell necrosis, generation of free radicals, immune responses and neuroinflammation. Thus, this review highlights risk assessment, safety regulations and regulatory guidelines of nanoparticles, which may reduce adverse reactions in humans and animals.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/toxicidade , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Patentes como Assunto , Nanomedicina Teranóstica/legislação & jurisprudência , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/diagnóstico , Nanomedicina Teranóstica/métodos , Nanomedicina Teranóstica/tendências
16.
Drug Dev Ind Pharm ; 46(9): 1524-1534, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32808552

RESUMO

This research planned to ameliorate an aqueous solubility and dissolution of Curcumin (CUR) by the formulation of inclusion complex with ß-cyclodextrin (ß-CD) and polyvinylpyrrolidone (PVP). The phase solubility study was performed to assess the solubility of CUR. The prepared CUR complex assessed for dissolution study, physicochemical evaluation, in-vitro antioxidant activity, molecular modeling, and anti-inflammatory assessment. The pivotal findings of phase-solubility studies demonstrate apparent stability constant (Kc) and complexation efficiency (CE) values for CUR-ß-CD and CUR-ß-CD-PVP complex was 175.4 M -1, 1.15% and 833.3.2 M -1 and 5.21%, respectively. The characterization results revealed amorphization of crystalline state (CUR) into amorphous state. The maximum drug release found with the ternary CUR complex (F7), i.e. 45.41 ± 3.78% in 6 h study. The chemical shift in the NMR supports that the aromatic ring of CUR is completely complexed inside the ß-CD cavity. The antioxidant activity of pure CUR was found to be 58.02 ± 2.21% and CUR ternary complex (F7) showed significantly higher activity to 96.02 ± 2.46%. The in-vivo effect of CUR complex (F7) was also found significantly higher than that of pure CUR. The molecular modeling study depicted that PVP increased the stability of the ternary complex by forming the link between CUR and ß-CD. Thus, the ternary inclusion complex of CUR-ß-CD-PVP could contribute as an innovative outcome in the enhancement of solubility and in-vivo activity.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina , Povidona/química , beta-Ciclodextrinas , Anti-Inflamatórios/química , Simulação de Acoplamento Molecular , Solubilidade
17.
Curr Drug Metab ; 21(9): 661-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32445453

RESUMO

Herbal medicines are being used since ancient times and are an important part of the alternative and traditional medicinal system. In recent decades, scientists are embracing herbal medicines based on the fact that a number of drugs that are currently in use are derived directly or indirectly from plant sources. Moreover, herbal drugs have lesser side effects, albeit are potentially strong therapeutic agents. The herbal medicine market is estimated to be around US $62 billion globally. Herbal medicine has gained widespread acceptance due to its low toxicity, low cost, ease of accessibility and efficacy in treating difficult diseases. Safety and efficacy are another important factors in the commercialization process of herbal medicines. Nanotechnology has been shown to be potentially effective in improving the bioactivity and bioavailability of herbal medicines. Development of nano-phytomedicines (or by reducing the size of phytomedicine), attaching polymers with phytomedicines and modifying the surface properties of herbal drugs, have increased the solubility, permeability and eventually the bioavailability of herbal formulations. Novel formulations such as niosomes, liposomes, nanospheres, phytosomes etc., can be exploited in this area. This article reviews herbal medicines, which have prominent activity in the Central Nervous System (CNS) disorders and reported nano-phytomedicines based delivery systems.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fitoterapia , Animais , Humanos , Nanomedicina
18.
Pharm Nanotechnol ; 7(3): 234-245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31486752

RESUMO

BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields. OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations. METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery. CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.


Assuntos
Portadores de Fármacos/química , Corantes Fluorescentes/química , Pontos Quânticos/química , Animais , Transporte Biológico , Técnicas Biossensoriais/métodos , Linhagem Celular , Portadores de Fármacos/toxicidade , Corantes Fluorescentes/toxicidade , Humanos , Imunoensaio/métodos , Imagem Óptica/métodos , Tamanho da Partícula , Pontos Quânticos/toxicidade , Propriedades de Superfície
19.
Int J Biol Macromol ; 128: 825-838, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690115

RESUMO

BACKGROUND: Daunorubicin hydrochloride (DAUN·HCl), due to low oral bioavailability poses the hindrance to be marketed as an oral formulation. AIM OF THE STUDY: To develop a natural biodegradable macromolecule i.e. Chitosan (CS)-coated-DAUN-PLGA-poly(lactic-co-glycolic acid)-Nanoparticles (NPs) with an aim to improve oral-DAUN bioavailability and to develop as well as validate UHPLC-MS/MS (ESI/Q-TOF) method for plasma quantification and pharmacokinetic analysis (PK) of DAUN. RESULTS: A particle size (198.3 ±â€¯9.21 nm), drug content (47.06 ±â€¯1.16 mg/mg) and zeta potential (11.3 ±â€¯0.98 mV), consisting of smooth and spherical shape was observed for developed formulation. Cytotoxicity studies for CS-DAUN-PLGA-NPs revealed; a comparative superiority over free DAUN-S (i.v.) in human breast adenocarcinoma cell lines (MCF-7) and a higher permeability i.e. 3.89 folds across rat ileum, as compared to DAUN-PLGA-NPs (p < 0.01) inhuman colon adenocarcinoma cell line (Caco-2). For PK, CS-DAUN-PLGA-NPs as compared to DAUN-S, exhibited a 10.0 fold higher bioavailability in Wister rat's plasma due to presence of a natural biodegradable macromolecule i.e. CS coated on the PLGA-NPs. With regard to bioanalytical method, easy as well as a rapid method for DAUN-plasma quantification was developed as; 2.75 min and 528.49/321.54 m/z for DAUN along with 1.94 min and 544.36/397.41 m/z for IS i.e. Doxorubicin, for elution time and transition, respectively. CONCLUSION: A novel natural biodegradable approach used in the preparation of CS coated DAUN-NPs for oral administration of DAUN is reported in this study which is can be utilized as an alternate for intravenous therapy.


Assuntos
Quitosana/química , Daunorrubicina/química , Daunorrubicina/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Daunorrubicina/administração & dosagem , Daunorrubicina/metabolismo , Liberação Controlada de Fármacos , Humanos , Mucosa Intestinal/metabolismo , Células MCF-7 , Tamanho da Partícula , Ratos , Propriedades de Superfície , Distribuição Tecidual
20.
J Sci Food Agric ; 99(6): 2757-2762, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30414173

RESUMO

BACKGROUND: The effect of storage time on the fluorescence emission intensity and physico-chemical properties of olive oil from the Palestinian cultivar Nabali Mohassan was investigated. Olive oil samples stored up to 7 years were obtained from different olive orchards in Palestine, where prolonged storage is still in use. RESULTS: As a result of oxidation, all fluorescent minor compounds (tocopherols, chlorophylls, pheophytins and phenolic compounds) of olive oil significantly decreased as the storage time increased, whereas viscosity increased (P < 0.05). Until 1 year of storage, the physico-chemical properties of olive oil samples were within the limits of both Palestinian and European quality standards, and minor compounds, although affected by a marked decrease compared to freshly produced oil, were still detectable. After 5 years, a 90% decrease of the fluorescence attributed to tocopherols occurred and, after 7 years, phenolics reached a loss of 90%. CONCLUSION: The analysis of fluorescence, together with other physical measures, was demonstrated to be a useful tool for monitoring oil aging. This is the first report on fluorescent minor compounds of oils obtained from Nabali Mohassan olive cultivar. A better knowledge of this single-cultivar oil could enhance the adoption of the best practices by producers, improving the whole production chain. © 2018 Society of Chemical Industry.


Assuntos
Armazenamento de Alimentos , Azeite de Oliva/análise , Análise de Alimentos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA