Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Altern Lab Anim ; 52(2): 94-106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445454

RESUMO

Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 µM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.


Assuntos
Benzoquinonas , Metanfetamina , Ratos , Animais , Células PC12 , Espécies Reativas de Oxigênio/farmacologia , Metanfetamina/toxicidade , Dopamina/farmacologia , Apoptose , Glutationa/farmacologia , Diferenciação Celular
2.
Iran J Basic Med Sci ; 25(6): 745-754, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35949307

RESUMO

Objectives: The goal of this study was to evaluate the neuroprotective effects of vit B12 on paraquat-induced neurotoxicity. Materials and Methods: Thirty-six male mice were randomly divided into six groups. Three groups were treated intraperitoneally with paraquat (10 mg/kg) twice a week (with a 3-day interval) for 3 weeks. Normal saline, vit B12 (1 mg /kg), or vit C (50 mg/kg) was injected 30 min before paraquat administration. Other groups only received normal saline (control), vit B12, or vit C in the same protocol. Motor performance and coordination were assayed by challenging beam traversal, pole, open field, and rotarod tests. The hippocampus and serum samples were isolated to evaluate the oxidative stress (GSH and ROS), apoptosis (caspase 3), and inflammatory markers (TNF-α and IL-1ß). Results: Administration of paraquat leads to induction of motor deficits, which were improved by treatment with vit B12. In addition, vit B12 could prevent oxidative damage, apoptosis, and inflammation caused by paraquat. Conclusion: It seems that vit B12 could be a novel therapeutic agent in the management of paraquat induced-neurotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA