Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(6): 1392-1402, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910532

RESUMO

Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Averaged across all neurons and stimuli, the firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory; however, this grand average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of stimulus information. These results reveal that prefrontal neurons that generate persistent activity maintain information more reliably during working memory.NEW & NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. Although the two models have been debated on theoretical terms, direct comparison of empirical results has been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Animais , Memória de Curto Prazo/fisiologia , Macaca mulatta , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia
2.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693624

RESUMO

While the current understanding of sensory and motor cortical areas has been defined topographical maps across the surface of these areas, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, with only limited evidence of functional clustering of neurons with similar stimulus properties. We sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. We analyzed neurophysiological recordings from male macaque monkeys before and after they were trained to perform cognitive tasks. Neurons with similar spatial or shape selectivity were more likely than chance to be encountered at short distances from each other. This pattern of organization was present even in naïve animals, prior to any cognitive training. Our results reveal that prefrontal microstructure automatically supports orderly representations of spatial and object information.

3.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546782

RESUMO

Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have recently challenged this idea. Activity-silent theories posit that stimulus information may be maintained by the activity pattern of neurons that do not produce firing rate significantly elevated about their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Although averaged across all neurons and stimuli, firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory, this grant average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of information about the stimulus identity. These results reveal that prefrontal neurons with generate persistent activity constitute the primary mechanism of working memory maintenance in the cortex. NEW AND NOTEWORTHY: Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. While the two models have been debated on theoretical terms, direct comparison of empirical results have been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.

4.
Proc Natl Acad Sci U S A ; 119(25): e2202491119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35700361

RESUMO

Whether the size of the prefrontal cortex (PFC) in humans is disproportionate when compared to other species is a persistent debate in evolutionary neuroscience. This question has left the study of over/under-expansion in other structures relatively unexplored. We therefore sought to address this gap by adapting anatomical areas from the digital atlases of 18 mammalian species, to create a common interspecies classification. Our approach used data-driven analysis based on phylogenetic generalized least squares to evaluate anatomical expansion covering the whole brain. Our main finding suggests a divergence in primate evolution, orienting the stereotypical mammalian cerebral proportion toward a frontal and parietal lobe expansion in catarrhini (primate parvorder comprising old world monkeys, apes, and humans). Cerebral lobe volumes slopes plotted for catarrhini species were ranked as parietal∼frontal > temporal > occipital, contrasting with the ranking of other mammalian species (occipital > temporal > frontal∼parietal). Frontal and parietal slopes were statistically different in catarrhini when compared to other species through bootstrap analysis. Within the catarrhini's frontal lobe, the prefrontal cortex was the principal driver of frontal expansion. Across all species, expansion of the frontal lobe appeared to be systematically linked to the parietal lobe. Our findings suggest that the human frontal and parietal lobes are not disproportionately enlarged when compared to other catarrhini. Nevertheless, humans remain unique in carrying the most relatively enlarged frontal and parietal lobes in an infraorder exhibiting a disproportionate expansion of these areas.


Assuntos
Evolução Biológica , Catarrinos , Lobo Frontal , Lobo Parietal , Animais , Atlas como Assunto , Catarrinos/anatomia & histologia , Lobo Frontal/anatomia & histologia , Humanos , Tamanho do Órgão , Lobo Parietal/anatomia & histologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA