Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 21746-21756, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631911

RESUMO

Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu2NiSnS4 nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet-visible-near-infrared (UV-Vis-NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.

2.
ACS Omega ; 7(11): 9674-9683, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350350

RESUMO

Nitrogenated graphene oxide-decorated copper sulfide nanocomposites (Cu x S-NrGO, where x = 1 and 2) are designed to be incorporated in polysulfone (PSF) membranes for effective fouling resistance of PSF membranes and their dye removal capacity. The developed membranes possess more hydrophilicity and an enhancement in pure water flux (PWF). Also, the highest bovine serum albumin (BSA) rejection of 89% was observed when compared to membranes with pristine PSF (5 L/m2 h PWF and 88% BSA rejection) and CuS-incorporated PSF membranes (14 L/m2 h PWF and 83% BSA rejection) because of N doping and enhanced permeability. It is also found that the Cu x S-NrGO-incorporated PSF membranes exhibited a significantly higher fouling resistance, a larger permeate flux recovery ratio (FRR) of nearly 82%, and a congo red dye rejection of 93%. Cu x S-NrGO nanoparticles thus demonstrate the potential efficacy of enhancing the hydrophilicity, leading to a better flux, dye removal capacity, and antifouling capacity with a very high FRR value of 82% because of a strong interaction between the N-active sites of the NrGO, Cu x S, and polysulfone matrix, and negligible leaching of nanoparticles is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA