Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627303

RESUMO

Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. We present here applications of a recently implemented Depth-First-Search graph algorithm to dissect the dynamics of transient water-mediated lipid clusters at the interface of a model bilayer composed of 1-palmytoyl-2-oleoyl-sn-glycero-2-phosphatidylserine (POPS) and cholesterol. Relative to a reference POPS bilayer without cholesterol, in the POPS:cholesterol bilayer there is a somewhat less frequent sampling of relatively complex and extended water-mediated hydrogen-bond networks of POPS headgroups. The analysis protocol used here is more generally applicable to other lipid:cholesterol bilayers.


Assuntos
Colesterol , Fosfatidilserinas , Membranas , Água , Hidrogênio
2.
Elife ; 82019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31454312

RESUMO

Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.


Assuntos
Evolução Molecular , Duplicação Gênica , Mutação de Sentido Incorreto , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/genética , Biologia Computacional , Modelos Genéticos , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA