Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937592

RESUMO

Catalytic processes are largely dominated by transition-metal complexes. Main-group compounds that can mimic the behaviour of the transition-metal complexes are of great interest due to their potential to substitute or complement transition metals in catalysis. While a few main-group molecular centres were shown to activate dihydrogen via the oxidative addition process, catalytic hydrogenation using these species has remained challenging. Here we report the synthesis, isolation and full characterization of the geometrically constrained phosphenium cation with the 2,6-bis(o-carborano)pyridine pincer-type ligand. Notably, this cation can activate the H-H bond by oxidative addition to a single PIII cationic centre, producing a dihydrophosphonium cation. This phosphenium cation is also capable of catalysing hydrogenation reactions of C=C double bonds and fused aromatic systems, making it a main-group compound that can both activate H2 at a single molecular main-group centre and be used for catalytic hydrogenation. This finding shows the potential of main-group compounds, in particular phosphorus-based compounds, to serve as metallomimetic hydrogenation catalysts.

2.
Chem Commun (Camb) ; 58(87): 12176-12179, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226583

RESUMO

In this work the first examples of C-N bond activation by insertion into a geometrically constrained PIII-centre are shown. The mechanisms of these activation processes leading to new PV species were studied both experimentally and computationally. Interestingly, in the case of insertion of the PIII-centre into an N-C(O)H bond, an unstable phosphoranyl-formaldehyde intermediate is probably formed, which undergoes decarbonylation in the presence of a catalytic amount of HCl producing a hydrophosphorane.


Assuntos
Catálise
3.
Dalton Trans ; 50(45): 16478-16482, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34730572

RESUMO

An unexpected rearrangement occurred when an imidazolinium based OCO pincer-type ligand (1) reacted with PCl3 producing a chlorophosphine with a pendant oxazolium "arm" (3). The mechanism of this rearrangement was studied both experimentally and by density functional theory (DFT) computations. The deprotonation of 3 led to further unexpected results.

4.
J Am Chem Soc ; 143(26): 9842-9848, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160218

RESUMO

Paramagnetic metal complexes gained a lot of attention due to their participation in a number of important chemical reactions. In most cases, these complexes are dominated by 17-e metalloradicals that are associatively activated with highly reactive paramagnetic 19-e species. Molybdenum paramagnetic complexes are among the most investigated ones. While some examples of persistent 17-e Mo-centered radicals have been reported, in contrast, 19-e Mo-centered radicals are illusive species and as such could rarely be detected. In this work, the photodissociation of the [Cp(CO)3Mo]2 dimer (1) in the presence of phosphines was revisited. As a result, the first persistent, formally 19-e Mo radical with significant electron density on the Mo center (22%), Cp(CO)3Mo•PPh2(o-C2B10H11) (5b), was generated and characterized by EPR spectroscopy and MS as well as studied by DFT calculations. The stabilization of 5b was likely achieved due to a unique electron-withdrawing effect of the o-carboranyl substituent at the phosphorus center.

5.
Org Biomol Chem ; 19(25): 5544-5550, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34060566

RESUMO

Hydrosilylation of C[double bond, length as m-dash]C double and C[triple bond, length as m-dash]C triple bonds is one of the most widely used processes in organosilicon chemistry, mostly catalyzed by Pt-based complexes. We report here the synthesis of an air-stable dicationic Zn2+-based complex in a hemilabile tris(2-methyl-6-pyridylmethyl) phosphine (TmPPh) ligand, 12+[B(C6F5)4]2. When heated, 12+[B(C6F5)4]2 activates Si-H bonds reversibly via ligand/metal cooperation between Lewis acidic Zn2+ and Lewis basic N centers in a frustrated Lewis pair (FLP) type fashion. Consequently, 12+[B(C6F5)4]2 was found to be an effective catalyst for hydrosilylation reactions of C[double bond, length as m-dash]C double and C[triple bond, length as m-dash]C triple bonds. Remarkably, these hydrosilylation reactions can be loaded under aerobic conditions, as well as, in some cases, work under neat conditions. The mechanism of the activation of the Si-H bond and the hydrosilylation reaction is proposed based on experiments and density functional theory (DFT) calculations.

6.
Chem Commun (Camb) ; 55(70): 10448-10451, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31410423

RESUMO

The activation of Si-H bonds is a very important transformation both in organic and inorganic chemistry. Herein we report that 1,2-dibenzoyl-o-carborane (1) reacts with Si-H bonds, yielding new hydrofurane-type products. The mechanism of this Si-H bond activation was studied both experimentally and by DFT calculations, and supposedly proceeds in an FLP-type manner.

7.
Chem Commun (Camb) ; 54(64): 8857-8860, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30039144

RESUMO

The first examples of group 13 element containing pyridinophanes have been assembled using heteroatom N-E-N bridges (E = B, Al). The presence of B and Al as acceptor atoms in the bridges and their coordination with pyridine nitrogen has a very strong influence on the conformational rigidity of the pyridinophanes.

8.
Chemistry ; 22(31): 11035-41, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27351275

RESUMO

Reactions of bis(phosphinimino)amines LH and L'H with Me2 S⋅BH2 Cl afforded chloroborane complexes LBHCl (1) and L'BHCl (2), and the reaction of L'H with BH3 ⋅Me2 S gave a dihydridoborane complex L'BH2 (3) (LH=[{(2,4,6-Me3 C6 H2 N)P(Ph2 )}2 N]H and L'H=[{(2,6-iPr2 C6 H3 N)P(Ph2 )}2 N]H). Furthermore, abstraction of a hydride ion from L'BH2 (3) and LBH2 (4) mediated by Lewis acid B(C6 F5 )3 or the weakly coordinating ion pair [Ph3 C][B(C6 F5 )4 ] smoothly yielded a series of borenium hydride cations: [L'BH](+) [HB(C6 F5 )3 ](-) (5), [L'BH](+) [B(C6 F5 )4 ](-) (6), [LBH](+) [HB(C6 F5 )3 ](-) (7), and [LBH](+) [B(C6 F5 )4 ](-) (8). Synthesis of a chloroborenium species [LBCl](+) [BCl4 ](-) (9) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 (4) with three equivalents of BCl3 . It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three-coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4 (-) can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4-dimethylaminopyridine (DMAP), [LBH⋅(DMAP)](+) [B(C6 F5 )4 ](-) (10). The solid-state structures of complexes 1, 5, and 9 were investigated by means of single-crystal X-ray structural analysis.

9.
Dalton Trans ; 44(36): 15779-85, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26304772

RESUMO

The reaction of a recently synthesized dihydroboron species complexed with bis(phosphinimino)amide, LBH2 (), (L = [N(Ph2PN(2,4,6-Me3C6H2))2](-)) with 3 equivalents of BH2Cl·SMe2 or one equivalent of BCl3 affords the first stable monohydridoborenium ion, [LBH](+)[HBCl3](-) () that is stable without a weakly coordinating bulky anion. Compound can also be prepared directly by refluxing LH with 3 equivalents of BH2Cl·SMe2. Interestingly, reaction of LBH2 () with elemental sulfur and selenium involves oxidative addition of S and Se into B-H bonds and subsequent release of H2S (or H2Se) from the intermediate LB(SH)2 (or LB(SeH)2) species forming stable compounds with terminal boron-chalcogen double bonds LB[double bond, length as m-dash]S () and LB[double bond, length as m-dash]Se (). The electronic structures of compounds , and were elucidated by high resolution mass spectrometry, multi-nuclear NMR and single crystal X-ray diffraction studies. Ab initio calculations on are in excellent agreement with its experimental structure and clearly support the existence of the boron-sulfur double bond.


Assuntos
Compostos de Boro/síntese química , Selênio/química , Compostos de Sulfidrila/química , Compostos de Boro/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA