Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 13816-13832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265595

RESUMO

Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.


Assuntos
Arsênio , Arsenitos , Oryza , Arseniatos/toxicidade , Arseniatos/metabolismo , Arsenitos/toxicidade , Arsenitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mali , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Prolina/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA