Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Ann Biomed Eng ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952144

RESUMO

Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.

2.
Biomaterials ; 281: 121364, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066288

RESUMO

Delivering drugs directly to the inflamed intestinal sites to treat inflammatory bowel disease (IBD), particularly Crohn's and ulcerative colitis, is highly challenging. Recent advances in colitis therapy medications are expanding opportunities for improving local on-site drug availability by minimising the associated systemic side-effects. Drug delivery with targeted carrier systems has shown the potential to increase site-specificity, stability, and therapeutic efficacy. Herein, we report the development of a strong anionic charged inflammation targeted nanocarriers (IT-NCs) loaded with an immunosuppressant model drug. This system showed preferential adhesion on a charge-modified surface in vitro, and in both dextran sulfate sodium (DSS) and TNBS colitis mice in vivo models. IT-NCs showed improved colitis phenotype therapeutic efficacy in both animal models compared to free drug. Furthermore, ex vivo study of colon tissue biopsies from patients with colitis revealed that IT-NCs adhered preferentially to inflamed biopsies compared to normal. Together, our results suggest that IT-NCs have promising therapeutic potential as delivery carriers' in colitis management.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Portadores de Fármacos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal , Camundongos
3.
Adv Sci (Weinh) ; 9(4): e2103189, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761543

RESUMO

The active stages of intestinal inflammation and the pathogenesis of ulcerative colitis are associated with superficial mucosal damage and intermittent wounding that leads to epithelial barrier defects and increased permeability. The standard therapeutic interventions for colitis have focused mainly on maintaining the remission levels of the disease. Nonetheless, such treatment strategies (using anti-inflammatory, immunomodulatory agents) do not address colitis' root cause, especially the mucosal damage and dysregulated intestinal barrier functions. Restoration of barrier functionality by mucosal healing or physical barrier protecting strategies shall be considered as an initial event in the disease suppression and progression. Herein, a biphasic hyaluronan (HA) enema suspension, naïve-HA systems that protect the dysregulated gut epithelium by decreasing the inflammation, permeability, and helping in maintaining the epithelial barrier integrity in the dextran sodium sulfate-induced colitis mice model is reported. Furthermore, HA-based system modulates intestinal epithelial junctional proteins and regulatory signaling pathways, resulting in attenuation of inflammation and mucosal protection. The results suggest that HA-based system can be delivered as an enema to act as a barrier protecting system for managing distal colonic inflammatory diseases, including colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/fisiopatologia , Colo/efeitos dos fármacos , Colo/fisiopatologia , Ácido Hialurônico/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiopatologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/provisão & distribuição , Adjuvantes Imunológicos/uso terapêutico , Animais , Modelos Animais de Doenças , Enema , Humanos , Ácido Hialurônico/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Transdução de Sinais
4.
Pharmacol Res ; 175: 106030, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896544

RESUMO

Cellular autophagy is a protective mechanism where cells degrade damaged organelles to maintain intracellular homeostasis. Apoptosis, on the other hand, is considered as programmed cell death. Interestingly, autophagy inhibits apoptosis by degrading apoptosis regulators. In hypertension, an imbalance of autophagy and apoptosis regulators can lead to renal injury and dysfunction. Previously, we have reported that toll-like receptor 4 (TLR4) mutant mice are protective against renal damage, in part, due to reduced oxidative stress and inflammation. However, the detailed mechanism remained elusive. In this study, we tested the hypothesis of whether TLR4 mutation reduces Ang-II-induced renal injury by inciting autophagy and suppressing apoptosis in the hypertensive kidney. Male mice with normal TLR4 expression (TLR4N, C3H/HeOuJ) and mutant TLR4 (TLR4M, C3H/HeJLps-d) aged 10-12 weeks were infused with Ang-II (1000 ng/kg/d) for 4 weeks to create hypertension. Saline infused appropriate control were used. Blood pressure was increased along with increased TLR4 expression in TLR4N mice receiving Ang-II compared to TLR4N control. Autophagy was downregulated, and apoptosis was upregulated in TLR4N mice treated with Ang-II. Also, kidney injury markers plasma lipocalin-2 (LCN2) and kidney injury molecule 1 (KIM-1) were upregulated in TLR4N mice treated with Ang-II. Besides, increased nuclear translocation and activity of NF-kB were measured in Ang-II-treated TLR4N mice. TLR4M mice remained protected against all these insults in hypertension. Together, these results suggest that Ang-II-induced TLR4 activation suppresses autophagy, induces apoptosis and kidney injury through in part by activating NF-kB signaling, and TLR4 mutation protects the kidney from Ang-II-induced hypertensive injury.


Assuntos
Angiotensina II , Hipertensão/complicações , Nefropatias/prevenção & controle , Receptor 4 Toll-Like/genética , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Nefropatias/etiologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
5.
BMC Biol ; 18(1): 83, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620114

RESUMO

BACKGROUND: Experimental reproducibility in mouse models is impacted by both genetics and environment. The generation of reproducible data is critical for the biomedical enterprise and has become a major concern for the scientific community and funding agencies alike. Among the factors that impact reproducibility in experimental mouse models is the variable composition of the microbiota in mice supplied by different commercial vendors. Less attention has been paid to how the microbiota of mice supplied by a particular vendor might change over time. RESULTS: In the course of conducting a series of experiments in a mouse model of malaria, we observed a profound and lasting change in the severity of malaria in mice infected with Plasmodium yoelii; while for several years mice obtained from a specific production suite of a specific commercial vendor were able to clear the parasites effectively in a relatively short time, mice subsequently shipped from the same unit suffered much more severe disease. Gut microbiota analysis of frozen cecal samples identified a distinct and lasting shift in bacteria populations that coincided with the altered response of the later shipments of mice to infection with malaria parasites. Germ-free mice colonized with cecal microbiota from mice within the same production suite before and after this change followed by Plasmodium infection provided a direct demonstration that the change in gut microbiota profoundly impacted the severity of malaria. Moreover, spatial changes in gut microbiota composition were also shown to alter the acute bacterial burden following Salmonella infection, and tumor burden in a lung tumorigenesis model. CONCLUSION: These changes in gut bacteria may have impacted the experimental reproducibility of diverse research groups and highlight the need for both laboratory animal providers and researchers to collaborate in determining the methods and criteria needed to stabilize the gut microbiota of animal breeding colonies and research cohorts, and to develop a microbiota solution to increase experimental rigor and reproducibility.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Malária/fisiopatologia , Plasmodium yoelii/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise Espaço-Temporal
6.
Front Immunol ; 10: 2604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787980

RESUMO

High aspect ratio zinc oxide nanowires (ZnONWs) have become one of the most important products in nanotechnology. The wide range applications of ZnONWs have heightened the need for evaluating the risks and biological consequences to these particles. In this study, we investigated inflammatory pathways activated by ZnONWs in cultured cells as well as the consequences of systemic exposure in mouse models. Confocal microscopy showed rapid phagocytic uptake of FITC-ZnONWs by macrophages. Exposure of macrophages or lung epithelial cells to ZnONWs induced the production of CCL2 and CCL11. Moreover, ZnONWs exposure induced both IL-6 and TNF-α production only in macrophages but not in LKR13 cells. Intratracheal instillation of ZnONWs in C57BL/6 mice induced a significant increase in the total numbers of immune cells in the broncho alveolar lavage fluid (BALFs) 2 days after instillation. Macrophages and eosinophils were the predominant cellular infiltrates of ZnONWs exposed mouse lungs. Similar cellular infiltrates were also observed in a mouse air-pouch model. Pro-inflammatory cytokines IL-6 and TNF-α as well as chemokines CCL11, and CCL2 were increased both in BALFs and air-pouch lavage fluids. These results suggest that exposure to ZnONWs may induce distinct inflammatory responses through phagocytic uptake and formation of soluble Zn2+ ions.


Assuntos
Quimiocina CCL11/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Inflamação/etiologia , Nanofios/efeitos adversos , Óxido de Zinco/efeitos adversos , Animais , Quimiocina CCL11/genética , Quimiocina CCL2/genética , Modelos Animais de Doenças , Técnicas In Vitro , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanofios/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/efeitos dos fármacos , Óxido de Zinco/química
7.
Nat Commun ; 10(1): 89, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626868

RESUMO

The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases.


Assuntos
Cumarínicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CACO-2 , Cumarínicos/química , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Organismos Livres de Patógenos Específicos , Proteínas de Junções Íntimas/genética
8.
Mol Cancer Ther ; 18(2): 301-311, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30404927

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against KRAS, a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration. Here, we investigated Urolithin A (Uro A), a novel natural compound derived from pomegranates, which targets numerous kinases downstream of KRAS, in particular the PI3K/AKT/mTOR signaling pathways. We showed that treatment of PDAC cells with Uro A blocked the phosphorylation of AKT and p70S6K in vitro, successfully inhibited the growth of tumor xenografts, and increased overall survival of Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice compared with vehicle or gemcitabine therapy alone. Histologic evaluation of these Uro A-treated tumor samples confirmed mechanistic actions of Uro A via decreased phosphorylation of AKT and p70S6K, reduced proliferation, and increased cellular apoptosis in both xenograft and PKT mouse models. In addition, Uro A treatment reprogrammed the tumor microenvironment, as evidenced by reduced levels of infiltrating immunosuppressive cell populations such as myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Overall, this work provides convincing preclinical evidence for the utility of Uro A as a therapeutic agent in PDAC through suppression of the PI3K/AKT/mTOR pathway.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Cumarínicos/administração & dosagem , Lythraceae/química , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Hepatol ; 69(4): 886-895, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29803899

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS: Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS: Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION: Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY: Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.


Assuntos
Disbiose , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Intestinos/microbiologia , Hepatopatias Alcoólicas/etiologia , Animais , Fezes/microbiologia , Hepatite/etiologia , Humanos , Mucosa Intestinal/metabolismo , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL
10.
J Immunol ; 200(10): 3556-3567, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610142

RESUMO

Silicosis is a lung inflammatory disease caused by chronic exposure to crystalline silica (CS). Leukotriene B4 (LTB4) plays an important role in neutrophilic inflammation, which drives silicosis and promotes lung cancer. In this study, we examined the mechanisms involved in CS-induced inflammatory pathways. Phagocytosis of CS particles is essential for the production of LTB4 and IL-1ß in mouse macrophages, mast cells, and neutrophils. Phagosomes enclosing CS particles trigger the assembly of lipidosome in the cytoplasm, which is likely the primary source of CS-induced LTB4 production. Activation of the JNK pathway is essential for both CS-induced LTB4 and IL-1ß production. Studies with bafilomycin-A1- and NLRP3-deficient mice revealed that LTB4 synthesis in the lipidosome is independent of inflammasome activation. Small interfering RNA knockdown and confocal microscopy studies showed that GTPases Rab5c, Rab40c along with JNK1 are essential for lipidosome formation and LTB4 production. BI-78D3, a JNK inhibitor, abrogated CS-induced neutrophilic inflammation in vivo in an air pouch model. These results highlight an inflammasome-independent and JNK activation-dependent lipidosome pathway as a regulator of LTB4 synthesis and CS-induced sterile inflammation.


Assuntos
Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Dióxido de Silício/farmacologia , Animais , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Células RAW 264.7 , Silicose/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
11.
Cancer Immunol Res ; 6(3): 332-347, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29382671

RESUMO

The presence of mast cells in some human colorectal cancers is a positive prognostic factor, but the basis for this association is incompletely understood. Here, we found that mice with a heterozygous mutation in the adenomatous polyposis coli gene (ApcMin/+) displayed reduced intestinal tumor burdens and increased survival in a chemokine decoy receptor, ACKR2-null background, which led to discovery of a critical role for mast cells in tumor defense. ACKR2-/-ApcMin/+ tumors showed increased infiltration of mast cells, their survival advantage was lost in mast cell-deficient ACKR2-/-SA-/-ApcMin/+ mice as the tumors grew rapidly, and adoptive transfer of mast cells restored control of tumor growth. Mast cells from ACKR2-/- mice showed elevated CCR2 and CCR5 expression and were also efficient in antigen presentation and activation of CD8+ T cells. Mast cell-derived leukotriene B4 (LTB4) was found to be required for CD8+ T lymphocyte recruitment, as mice lacking the LTB4 receptor (ACKR2-/-BLT1-/-ApcMin/+) were highly susceptible to intestinal tumor-induced mortality. Taken together, these data demonstrate that chemokine-mediated recruitment of mast cells is essential for initiating LTB4/BLT1-regulated CD8+ T-cell homing and generation of effective antitumor immunity against intestinal tumors. We speculate that the pathway reported here underlies the positive prognostic significance of mast cells in selected human tumors. Cancer Immunol Res; 6(3); 332-47. ©2018 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Intestinais/imunologia , Mastócitos/imunologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Feminino , Vigilância Imunológica , Leucotrieno B4/imunologia , Masculino , Camundongos Transgênicos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/imunologia
12.
Oncoimmunology ; 6(12): e1361593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209564

RESUMO

Inflammation and infection are key promoters of colon cancer but the molecular interplay between these events is largely unknown. Mice deficient in leukotriene B4 receptor1 (BLT1) are protected in inflammatory disease models of arthritis, asthma and atherosclerosis. In this study, we show that BLT1-/- mice when bred onto a spontaneous tumor (ApcMin/+) model displayed an increase in the rate of intestinal tumor development and mortality. A paradoxical increase in inflammation in the tumors from the BLT1-/-ApcMin/+ mice is coincidental with defective host response to infection. Germ-free BLT1-/-ApcMin/+ mice are free from colon tumors that reappeared upon fecal transplantation. Analysis of microbiota showed defective host response in BLT1-/- ApcMin/+ mice reshapes the gut microbiota to promote colon tumor development. The BLT1-/-MyD88-/- double deficient mice are susceptible to lethal neonatal infections. Broad-spectrum antibiotic treatment eliminated neonatal lethality in BLT1-/-MyD88-/- mice and the BLT1-/-MyD88-/-ApcMin+ mice are protected from colon tumor development. These results identify a novel interplay between the Toll-like receptor mediated microbial sensing mechanisms and BLT1-mediated host response in the control of colon tumor development.

13.
Semin Immunol ; 33: 58-64, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28982616

RESUMO

The high affinity leukotriene B4 receptor, BLT1 mediates chemotaxis of diverse leukocyte subsets to the sites of infection or inflammation. Whereas the pathological functions of LTB4/BLT1 axis in allergy, autoimmunity and cardiovascular disorders are well established; its role in cancer is only beginning to emerge. In this review, we summarize recent findings on LTB4/BLT1 axis enabling distinct outcomes toward tumor progression. In a mouse lung tumor model promoted by silicosis-induced inflammation, genetic deletion of BLT1 attenuated neutrophilic inflammation and tumor promotion. In contrast, in a spontaneous model of intestinal tumorigenesis, absence of BLT1 led to defective mucosal host response, altered microbiota and bacteria dependent colon tumor progression. Furthermore, BLT1 mediated CD8+ T cell recruitment was shown to be essential for initiating anti-tumor immunity in number of xenograft models and is critical for effective PD1 based immunotherapy. BLT2 mediated chemotherapy resistance, tumor promotion and metastasis are also discussed. This new information points to a paradigm shift in our understanding of the LTB4 pathways in cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Leucócitos/imunologia , Leucotrieno B4/metabolismo , Neoplasias/imunologia , Receptores do Leucotrieno B4/metabolismo , Animais , Carcinogênese , Movimento Celular , Quimiotaxia , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Microbiome ; 5(1): 46, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28438184

RESUMO

BACKGROUND: IL-17-producing γδT cells (γδT17) promote autoinflammatory diseases and cancers. Yet, γδT17 peripheral regulation has not been thoroughly explored especially in the context of microbiota-host interaction. The potent antigen-presenting CD103+ dendritic cell (DC) is a key immune player in close contact with both γδT17 cells and microbiota. This study presents a novel cellular network among microbiota, CD103+ DCs, and γδT17 cells. METHODS: Immunophenotyping of IL-17r-/- mice and IL-17r-/- IRF8-/- mice were performed by ex vivo immunostaining and flow cytometric analysis. We observed striking microbiome differences in the oral cavity and gut of IL-17r-/- mice by sequencing 16S rRNA gene (v1-v3 region) and analyzed using QIIME 1.9.0 software platform. Principal coordinate analysis of unweighted UniFrac distance matrix showed differential clustering for WT and IL-17r-/- mice. RESULTS: We found drastic homeostatic expansion of γδT17 in all major tissues, most prominently in cervical lymph nodes (cLNs) with monoclonal expansion of Vγ6 γδT17 in IL-17r-/- mice. Ki-67 staining and in vitro CFSE assays showed cellular proliferation due to cell-to-cell contact stimulation with microbiota-activated CD103+ DCs. A newly developed double knockout mice model for IL-17r and CD103+ DCs (IL-17r-/-IRF8-/-) showed a specific reduction in Vγ6 γδT17. Vγ6 γδT17 expansion is inhibited in germ-free mice and antibiotic-treated specific pathogen-free (SPF) mice. Microbiota transfer using cohousing of IL-17r-/- mice with wildtype mice induces γδT17 expansion in the wildtype mice with increased activated CD103+ DCs in cLNs. However, microbiota transfer using fecal transplant through oral gavage to bypass the oral cavity showed no difference in colon or systemic γδT17 expansion. CONCLUSIONS: These findings reveal for the first time that γδT17 cells are regulated by microbiota dysbiosis through cell-to-cell contact with activated CD103+ DCs leading to drastic systemic, monoclonal expansion. Microbiota dysbiosis, as indicated by drastic bacterial population changes at the phylum and genus levels especially in the oral cavity, was discovered in mice lacking IL-17r. This network could be very important in regulating both microbiota and immune players. This critical regulatory pathway for γδT17 could play a major role in IL-17-driven inflammatory diseases and needs further investigation to determine specific targets for future therapeutic intervention.


Assuntos
Bactérias/crescimento & desenvolvimento , Células Dendríticas/imunologia , Boca/microbiologia , Células Th17/imunologia , Animais , Antígenos CD/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Cadeias alfa de Integrinas/metabolismo , Camundongos , Camundongos Knockout , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Receptores de Interleucina-17/genética , Análise de Sequência de DNA/métodos
15.
J Immunol ; 197(5): 2016-26, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465528

RESUMO

Immunotherapies have shown considerable efficacy for the treatment of various cancers, but a multitude of patients remain unresponsive for various reasons, including poor homing of T cells into tumors. In this study, we investigated the roles of the leukotriene B4 receptor, BLT1, and CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, under endogenous as well as vaccine-induced antitumor immune response in a syngeneic murine model of B16 melanoma. Significant accelerations in tumor growth and reduced survival were observed in both BLT1(-/-) and CXCR3(-/-) mice as compared with wild-type (WT) mice. Analysis of tumor-infiltrating leukocytes revealed significant reduction of CD8(+) T cells in the tumors of BLT1(-/-) and CXCR3(-/-) mice as compared with WT tumors, despite their similar frequencies in the periphery. Adoptive transfer of WT but not BLT1(-/-) or CXCR3(-/-) CTLs significantly reduced tumor growth in Rag2(-/-) mice, a function attributed to reduced infiltration of knockout CTLs into tumors. Cotransfer experiments suggested that WT CTLs do not facilitate the infiltration of knockout CTLs to tumors. Anti-programmed cell death-1 (PD-1) treatment reduced the tumor growth rate in WT mice but not in BLT1(-/-), CXCR3(-/-), or BLT1(-/-)CXCR3(-/-) mice. The loss of efficacy correlated with failure of the knockout CTLs to infiltrate into tumors upon anti-PD-1 treatment, suggesting an obligate requirement for both BLT1 and CXCR3 in mediating anti-PD-1 based antitumor immune response. These results demonstrate a critical role for both BLT1 and CXCR3 in CTL migration to tumors and thus may be targeted to enhance efficacy of CTL-based immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Movimento Celular/imunologia , Regulação da Expressão Gênica , Melanoma Experimental/imunologia , Receptores CXCR3/metabolismo , Receptores do Leucotrieno B4/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiotaxia de Leucócito , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/deficiência , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores do Leucotrieno B4/deficiência , Receptores do Leucotrieno B4/genética
17.
PLoS One ; 11(6): e0156811, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27254317

RESUMO

Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in acquiring limiting nutrient iron and thrive in the gut.


Assuntos
Cumarínicos/farmacologia , Dieta , Ácido Elágico/metabolismo , Microbioma Gastrointestinal , Heme/metabolismo , Peroxidase/antagonistas & inibidores , Animais , Biocatálise/efeitos dos fármacos , Células da Medula Óssea/citologia , Cumarínicos/síntese química , Cumarínicos/metabolismo , Edema/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Lactoperoxidase/antagonistas & inibidores , Lactoperoxidase/metabolismo , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
18.
Ann Biomed Eng ; 44(10): 3032-3045, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27138524

RESUMO

This study demonstrated the effects of the directionality of oscillatory wall shear stress (WSS) on proliferation and proatherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of inflammatory mediators leukotriene B4 (LTB4) and bacterial lipopolysaccharide (LPS) from endothelial cells grown in an orbiting culture dish. Computational fluid dynamics (CFD) was applied to quantify the flow in the dish, while an analytical solution representing an extension of Stokes second problem was used for validation. Results indicated that WSS magnitude was relatively constant near the center of the dish and oscillated significantly (0-0.9 Pa) near the side walls. Experiments showed that LTB4 dominated the shear effects on cell proliferation and area. Addition of LPS didn't change proliferation, but significantly affected cell area. The expression of I-CAM1, E-Selectin and IL-6 were altered by directional oscillatory shear index (DOSI, a measure of the biaxiality of oscillatory shear), but not shear magnitude. The significance of DOSI was further reinforced by the strength of its interactions with other atherogenic factors. Hence, directionality of shear appears to be an important factor in regulating gene expression and provides a potential explanation of the propensity for increased vascular lesions in regions in the arteries with oscillating biaxial flow.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Modelos Cardiovasculares , Resistência ao Cisalhamento , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Selectina E/biossíntese , Células Endoteliais/patologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-6/biossíntese , Leucotrieno B4/farmacologia , Lipopolissacarídeos/toxicidade
19.
J Diabetes Res ; 2016: 5362506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798651

RESUMO

In diabetic nephropathy (DN) proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2(-/-) mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.


Assuntos
Albuminúria/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Deleção de Genes , Rim/metabolismo , Nefrite/prevenção & controle , Receptores de Quimiocinas/deficiência , Fatores Etários , Albuminúria/genética , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Genótipo , Humanos , Rim/patologia , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/genética , Nefrite/metabolismo , Nefrite/fisiopatologia , Fenótipo , Receptores de Quimiocinas/análise , Receptores de Quimiocinas/genética
20.
Clin Exp Metastasis ; 33(3): 263-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26669782

RESUMO

Metastasis causes most cancer related mortality but the mechanisms governing metastatic dissemination are poorly defined. Metastasis involves egression of cancer cells from the primary tumors, their survival in circulation and colonization at the secondary sites. Cancer cell egression from the primary tumor is the least defined process of metastasis as experimental metastasis models directly seed cancer cells in circulation, thus bypassing this crucial step. Here, we developed a spontaneous metastasis model that retains the egression step of metastasis. By repeated in vivo passaging of the poorly metastatic Lewis lung carcinoma (3LL) cells, we generated a cell line (p-3LL) that readily metastasizes to lungs and liver from subcutaneous (s.c.) tumors. Interestingly, when injected intravenously, 3LL and p-3LL cells showed a similar frequency of metastasis. This suggests enhanced egression of p-3LL cells may underlie the enhanced metastatic spread from primary tumors. Microarray analysis of 3LL and p-3LL cells as well as the primary tumors derived from these cells revealed altered expression of several genes including significant upregulation of a tight junction protein, claudin-9. Increased expression of claudin-9 was confirmed in both p-3LL cells and tumors derived from these cells. Knockdown of claudin-9 expression in p-3LL cells by si-RNA significantly reduced their motility, invasiveness in vitro and metastasis in vivo. Conversely, transient overexpression of claudin-9 in 3LL cells enhanced their motility. These results suggest an essential role for claudin-9 in promoting lung cancer metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Claudinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Invasividade Neoplásica/genética , Animais , Western Blotting , Carcinoma Pulmonar de Lewis/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Claudinas/genética , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA