Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 13(1): 19373, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938631

RESUMO

Medical imaging is considered a suitable alternative testing method for the detection of lung diseases. Many researchers have been working to develop various detection methods that have aided in the prevention of lung diseases. To better understand the condition of the lung disease infection, chest X-Ray and CT scans are utilized to check the disease's spread throughout the lungs. This study proposes an automated system for the detection multi lung diseases in X-Ray and CT scans. A customized convolutional neural network (CNN) and two pre-trained deep learning models with a new image enhancement model are proposed for image classification. The proposed lung disease detection comprises two main steps: pre-processing, and deep learning classification. The new image enhancement algorithm is developed in the pre-processing step using k-symbol Lerch transcendent functions model which enhancement images based on image pixel probability. While, in the classification step, the customized CNN architecture and two pre-trained CNN models Alex Net, and VGG16Net are developed. The proposed approach was tested on publicly available image datasets (CT, and X-Ray image dataset), and the results showed classification accuracy, sensitivity, and specificity of 98.60%, 98.40%, and 98.50% for the X-Ray image dataset, respectively, and 98.80%, 98.50%, 98.40% for the CT scans dataset, respectively. Overall, the obtained results highlight the advantages of the image enhancement model as a first step in processing.


Assuntos
Aprendizado Profundo , Pneumopatias , Humanos , Raios X , Radiografia , Tomografia Computadorizada por Raios X , Pneumopatias/diagnóstico por imagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-36129871

RESUMO

Detecting forged handwriting is important in a wide variety of machine learning applications, and it is challenging when the input images are degraded with noise and blur. This article presents a new model based on conformable moments (CMs) and deep ensemble neural networks (DENNs) for forged handwriting detection in noisy and blurry environments. Since CMs involve fractional calculus with the ability to model nonlinearities and geometrical moments as well as preserving spatial relationships between pixels, fine details in images are preserved. This motivates us to introduce a DENN classifier, which integrates stenographic kernels and spatial features to classify input images as normal (original, clean images), altered (handwriting changed through copy-paste and insertion operations), noisy (added noise to original image), blurred (added blur to original image), altered-noise (noise is added to the altered image), and altered-blurred (blur is added to the altered image). To evaluate our model, we use a newly introduced dataset, which comprises handwritten words altered at the character level, as well as several standard datasets, namely ACPR 2019, ICPR 2018-FDC, and the IMEI dataset. The first two of these datasets include handwriting samples that are altered at the character and word levels, and the third dataset comprises forged International Mobile Equipment Identity (IMEI) numbers. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of classification rate.

3.
J King Saud Univ Sci ; 34(7): 102254, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35957965

RESUMO

The medical image enhancement is major class in the image processing which aims for improving the medical diagnosis results. The improving of the quality of the captured medical images is considered as a challenging task in medical image. In this study, a trace operator in fractional calculus linked with the derivative of fractional Rényi entropy is proposed to enhance the low contrast COVID-19 images. The pixel probability values of the input image are obtained first in the proposed image enhancement model. Then the covariance matrix between the input image and the probability of a pixel intensity of the input image to be calculated. Finally, the image enhancement is performed by using the convolution of covariance matrix result with the input image. The proposed enhanced image algorithm is tested against three medical image datasets with different qualities. The experimental results show that the proposed medical image enhancement algorithm achieves the good image quality assessments using both the BRISQUE, and PIQE quality measures. Moreover, the experimental results indicated that the final enhancement of medical images using the proposed algorithm has outperformed other methods. Overall, the proposed algorithm has significantly improved the image which can be useful for medical diagnosis process.

4.
Quant Imaging Med Surg ; 12(1): 172-183, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993069

RESUMO

BACKGROUND: The interest in using fractional calculus operators has grown in the field of image processing. Image enhancement is one of image processing tools that aims to improve the details of an image. The enhancement of medical images is a challenging task due to the unforeseeable variation in the quality of the captured images. METHODS: In this study, we present a mathematical model based on the class of fractional partial differential equations (FPDEs). The class is formulated by the proportional-Caputo hybrid operator (PCHO). Moreover, some properties of the geometric functions in the unit disk are applied to determine the upper bound solutions for this class of FPDEs. The upper bound solution is indicated in the relations of the general hypergeometric functions. The main advantage of FPDE lies in its capability to enhance the low contrast intensities through the proposed fractional enhanced operator. RESULTS: The proposed image enhancement algorithm is tested against brain and lungs computed tomography (CT) scans datasets of different qualities to show that it is robust and can withstand dramatic variations in quality. The quantitative results of Brisque, Piqe, SSEQ, and SAMGVG were 40.93%, 41.13%, 66.09%, and 31.04%, respectively for brain magnetic resonance imaging (MRI) images and 39.07, 41.33, 30.97, and 159.24 respectively for the CT lungs images. The comparative results show that the proposed image enhancement model achieves the best image quality assessments. CONCLUSIONS: Overall, this model significantly improves the details of the given datasets, and could potentially help the medical staff during the diagnosis process.

5.
Entropy (Basel) ; 22(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33286289

RESUMO

Many health systems over the world have collapsed due to limited capacity and a dramatic increase of suspected COVID-19 cases. What has emerged is the need for finding an efficient, quick and accurate method to mitigate the overloading of radiologists' efforts to diagnose the suspected cases. This study presents the combination of deep learning of extracted features with the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, pneumonia and healthy computed tomography (CT) lung scans. In this study, pre-processing is used to reduce the effect of intensity variations between CT slices. Then histogram thresholding is used to isolate the background of the CT lung scan. Each CT lung scan undergoes a feature extraction which involves deep learning and a Q-deformed entropy algorithm. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, combining all extracted features significantly improves the performance of the LSTM network to precisely discriminate between COVID-19, pneumonia and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 321 patients is 99.68%.

6.
Entropy (Basel) ; 22(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286802

RESUMO

Brain tumor detection at early stages can increase the chances of the patient's recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.) by using the quantum calculus. Then we employ the result to extend the local binary patterns (LBP) to get the quantum entropy LBP (QELBP). The proposed study consists of two approaches of features extractions of MRI brain scans, namely, the QELBP and the deep learning DL features. The classification of MRI brain scan is improved by exploiting the excellent performance of the QELBP-DL feature extraction of the brain in MRI brain scans. The combining all of the extracted features increase the classification accuracy of long short-term memory network when using it as the brain tumor classifier. The maximum accuracy achieved for classifying a dataset comprising 154 MRI brain scan is 98.80%. The experimental results demonstrate that combining the extracted features improves the performance of MRI brain tumor classification.

7.
Entropy (Basel) ; 21(4)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33267085

RESUMO

Forgery in digital images is immensely affected by the improvement of image manipulation tools. Image forgery can be classified as image splicing or copy-move on the basis of the image manipulation type. Image splicing involves creating a new tampered image by merging the components of one or more images. Moreover, image splicing disrupts the content and causes abnormality in the features of a tampered image. Most of the proposed algorithms are incapable of accurately classifying high-dimension feature vectors. Thus, the current study focuses on improving the accuracy of image splicing detection with low-dimension feature vectors. This study also proposes an approximated Machado fractional entropy (AMFE) of the discrete wavelet transform (DWT) to effectively capture splicing artifacts inside an image. AMFE is used as a new fractional texture descriptor, while DWT is applied to decompose the input image into a number of sub-images with different frequency bands. The standard image dataset CASIA v2 was used to evaluate the proposed approach. Superior detection accuracy and positive and false positive rates were achieved compared with other state-of-the-art approaches with a low-dimension of feature vectors.

8.
Comput Methods Programs Biomed ; 163: 21-28, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30119853

RESUMO

BACKGROUND AND OBJECTIVES: The MRI brain tumors segmentation is challenging due to variations in terms of size, shape, location and features' intensity of the tumor. Active contour has been applied in MRI scan image segmentation due to its ability to produce regions with boundaries. The main difficulty that encounters the active contour segmentation is the boundary tracking which is controlled by minimization of energy function for segmentation. Hence, this study proposes a novel fractional Wright function (FWF) as a minimization of energy technique to improve the performance of active contour without edge method. METHOD: In this study, we implement FWF as an energy minimization function to replace the standard gradient-descent method as minimization function in Chan-Vese segmentation technique. The proposed FWF is used to find the boundaries of an object by controlling the inside and outside values of the contour. In this study, the objective evaluation is used to distinguish the differences between the processed segmented images and ground truth using a set of statistical parameters; true positive, true negative, false positive, and false negative. RESULTS: The FWF as a minimization of energy was successfully implemented on BRATS 2013 image dataset. The achieved overall average sensitivity score of the brain tumors segmentation was 94.8 ±â€¯4.7%. CONCLUSIONS: The results demonstrate that the proposed FWF method minimized the energy function more than the gradient-decent method that was used in the original three-dimensional active contour without edge (3DACWE) method.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Diagnóstico por Computador/métodos , Reações Falso-Positivas , Humanos , Imageamento Tridimensional , Modelos Estatísticos , Sensibilidade e Especificidade
9.
Entropy (Basel) ; 20(5)2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265434

RESUMO

Kidney image enhancement is challenging due to the unpredictable quality of MRI images, as well as the nature of kidney diseases. The focus of this work is on kidney images enhancement by proposing a new Local Fractional Entropy (LFE)-based model. The proposed model estimates the probability of pixels that represent edges based on the entropy of the neighboring pixels, which results in local fractional entropy. When there is a small change in the intensity values (indicating the presence of edge in the image), the local fractional entropy gives fine image details. Similarly, when no change in intensity values is present (indicating smooth texture), the LFE does not provide fine details, based on the fact that there is no edge information. Tests were conducted on a large dataset of different, poor-quality kidney images to show that the proposed model is useful and effective. A comparative study with the classical methods, coupled with the latest enhancement methods, shows that the proposed model outperforms the existing methods.

10.
ScientificWorldJournal ; 2014: 606570, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295304

RESUMO

Digital image forgery is becoming easier to perform because of the rapid development of various manipulation tools. Image splicing is one of the most prevalent techniques. Digital images had lost their trustability, and researches have exerted considerable effort to regain such trustability by focusing mostly on algorithms. However, most of the proposed algorithms are incapable of handling high dimensionality and redundancy in the extracted features. Moreover, existing algorithms are limited by high computational time. This study focuses on improving one of the image splicing detection algorithms, that is, the run length run number algorithm (RLRN), by applying two dimension reduction methods, namely, principal component analysis (PCA) and kernel PCA. Support vector machine is used to distinguish between authentic and spliced images. Results show that kernel PCA is a nonlinear dimension reduction method that has the best effect on R, G, B, and Y channels and gray-scale images.


Assuntos
Reconhecimento Automatizado de Padrão/métodos , Fotografação/métodos , Análise de Componente Principal/métodos , Processamento de Sinais Assistido por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão/tendências , Fotografação/tendências
11.
ScientificWorldJournal ; 2014: 562194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982966

RESUMO

Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.


Assuntos
Algoritmos , Análise por Conglomerados , Reconhecimento Automatizado de Padrão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA