Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677744

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor deficits. The exact etiology of PD is currently unknown; however, the pathological hallmarks of PD include excessive production of reactive oxygen species, enhanced neuroinflammation, and overproduction of α-synuclein. Under normal physiological conditions, aggregated α-synuclein is degraded via the autophagy lysosomal pathway. However, impairment of the autophagy lysosomal pathway results in α-synuclein accumulation, thereby facilitating the pathogenesis of PD. Current medications only manage the symptoms, but are unable to delay, prevent, or cure the disease. Collectively, oxidative stress, inflammation, apoptosis, and autophagy play crucial roles in PD; therefore, there is an enormous interest in exploring novel bioactive agents of natural origin for their protective roles in PD. The present study evaluated the role of myrcene, a monoterpene, in preventing the loss of dopaminergic neurons in a rotenone (ROT)-induced rodent model of PD, and elucidated the underlying mechanisms. Myrcene was administered at a dose of 50 mg/kg, 30 min prior to the intraperitoneal injections of ROT (2.5 mg/kg). Administration of ROT caused a considerable loss of dopaminergic neurons, subsequent to a significant reduction in the antioxidant defense systems, increased lipid peroxidation, and activation of microglia and astrocytes, along with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß) and matrix metalloproteinase-9. Rotenone also resulted in impairment of the autophagy lysosomal pathway, as evidenced by increased expression of LC3, p62, and beclin-1 with decreased expression in the phosphorylation of mTOR protein. Collectively, these factors result in the loss of dopaminergic neurons. However, myrcene treatment has been observed to restore antioxidant defenses and attenuate the increase in concentrations of lipid peroxidation products, pro-inflammatory cytokines, diminished microglia, and astrocyte activation. Myrcene treatment also enhanced the phosphorylation of mTOR, reinstated neuronal homeostasis, restored autophagy-lysosomal degradation, and prevented the increased expression of α-synuclein following the rescue of dopaminergic neurons. Taken together, our study clearly revealed the mitigating effect of myrcene on dopaminergic neuronal loss, attributed to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, and favorable modulation of autophagic flux. This study suggests that myrcene may be a potential candidate for therapeutic benefits in PD.


Assuntos
Antioxidantes , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Apoptose , Autofagia , Citocinas/metabolismo , Neurônios Dopaminérgicos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Rotenona/toxicidade
2.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361780

RESUMO

Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


Assuntos
Autofagia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Catalase/genética , Catalase/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081327

RESUMO

Parkinson's disease, the second common neurodegenerative disease is clinically characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with upregulation of neuroinflammatory markers and oxidative stress. Autophagy lysosome pathway (ALP) plays a major role in degradation of damaged organelles and proteins for energy balance and intracellular homeostasis. However, dysfunction of ALP results in impairment of α-synuclein clearance which hastens dopaminergic neurons loss. In this study, we wanted to understand the neuroprotective efficacy of Val in rotenone induced PD rat model. Animals received intraperitoneal injections (2.5 mg/kg) of rotenone daily followed by Val (40 mg/kg, i.p) for four weeks. Valeric acid, a straight chain alkyl carboxylic acid found naturally in Valeriana officianilis have been used in the treatment of neurological disorders. However, their neuroprotective efficacy has not yet been studied. In our study, we found that Val prevented rotenone induced upregulation of pro-inflammatory cytokine oxidative stress, and α-synuclein expression with subsequent increase in vital antioxidant enzymes. Moreover, Val mitigated rotenone induced hyperactivation of microglia and astrocytes. These protective mechanisms prevented rotenone induced dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Additionally, Val treatment prevented rotenone blocked mTOR-mediated p70S6K pathway as well as apoptosis. Moreover, Val prevented rotenone mediated autophagic vacuole accumulation and increased lysosomal degradation. Hence, Val could be further developed as a potential therapeutic candidate for treatment of PD.


Assuntos
Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Autofagia , Neurônios Dopaminérgicos/efeitos dos fármacos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Ácidos Pentanoicos/farmacologia , Animais , Antioxidantes/uso terapêutico , Antiparkinsonianos/uso terapêutico , Apoptose , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Masculino , Doença de Parkinson/etiologia , Ácidos Pentanoicos/uso terapêutico , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Desacopladores/toxicidade , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
J Neuroinflammation ; 16(1): 142, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291966

RESUMO

Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.


Assuntos
Inflamação/patologia , Acidente Vascular Cerebral/patologia , Animais , Humanos , Inflamação/imunologia , Acidente Vascular Cerebral/imunologia
5.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185705

RESUMO

Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.


Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Lycopodium/química , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Metaloproteinases da Matriz/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Wistar , Rotenona , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo
6.
Sci Rep ; 8(1): 13077, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166610

RESUMO

Autistic spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social communication and restricted/repetitive behavior patterns or interests. Antagonists targeting histamine H3 receptor (H3R) are considered potential therapeutic agents for the therapeutic management of different brain disorders, e.g., cognitive impairments. Therefore, the effects of subchronic treatment with the potent and selective H3R antagonist DL77 (5, 10, or 15 mg/kg, i.p.) on sociability, social novelty, anxiety, and aggressive/repetitive behavior in male Tuck-Ordinary (TO) mice with ASD-like behaviors induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, i.p.) were evaluated using the three-chamber test (TCT), marble burying test (MBT), nestlet shredding test (NST), and elevated plus maze (EPM) test. The results showed that VPA-exposed mice exhibited significantly lower sociability and social novelty preference compared to VPA-exposed mice that were pretreated with DL77 (10 or 15 mg/kg, i.p.). VPA-exposed mice presented a significantly higher percentage of buried marbles in MBT and shredded nestlet significantly more in NST compared to the control groups. However, VPA-exposed animals pretreated with DL77 (10 or 15 mg/kg, i.p.) buried a reduced percentage of marbles in MBT and presented a significantly lower percentage of shredding behavior in NST. On the other hand, pretreatment with DL77 (5, 10, or 15 mg/kg, i.p.) failed to restore the disturbed anxiety levels and hyperactivity observed in VPA-exposed animals in EPM, whereas the reference drug donepezil (DOZ, 1 mg/kg, i.p.) significantly palliated the anxiety and reduced the hyperactivity measures of VPA-exposed mice. Furthermore, pretreatment with DL77 (10 or 15 mg/kg, i.p.) modulated oxidative stress status by increasing GSH and decreasing MDA, and it attenuated the proinflammatory cytokines IL-1ß, IL-6 and TNF-α exacerbated by lipopolysaccharide (LPS) challenge, in VPA-exposed mouse brain tissue. Taken together, these results provide evidence that modulation of brain histaminergic neurotransmission, such as by subchronic administration of the H3R antagonist DL77, may serve as an effective pharmacological therapeutic target to rescue ASD-like behaviors in VPA-exposed animals, although further investigations are necessary to corroborate and expand these initial data.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Comportamento Animal , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Éteres Fenílicos/uso terapêutico , Piperidinas/uso terapêutico , Receptores Histamínicos H3/metabolismo , Ácido Valproico/efeitos adversos , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Transtorno Autístico/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Comportamento de Escolha/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Donepezila/farmacologia , Donepezila/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Feminino , Antagonistas dos Receptores Histamínicos H3/farmacologia , Mediadores da Inflamação/metabolismo , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Piperidinas/farmacologia , Comportamento Social , Comportamento Estereotipado/efeitos dos fármacos
7.
Neurobiol Dis ; 114: 95-110, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486300

RESUMO

Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Neovascularização Patológica/metabolismo , Junções Íntimas/metabolismo , Substância Branca/metabolismo , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Endotélio Vascular/diagnóstico por imagem , Hipertensão/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Masculino , Neovascularização Patológica/diagnóstico por imagem , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Substância Branca/diagnóstico por imagem , Substância Branca/lesões
8.
Behav Brain Res ; 312: 415-30, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363923

RESUMO

The potential contributions of the brain histaminergic system in neurodegenerative diseases, and the possiblity of histamine-targeting treatments is attracting considerable interests. The histamine H3 receptor (H3R) is expressed mainly in the central nervous system, and is, consequently, an attractive pharmacological target. Although recently described clinical trials have been disappointing in attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCH), numerous H3R antagonists, including pitolisant, demonstrate potential in the treatment of narcolepsy, excessive daytime sleepiness associated with cognitive impairment, epilepsy, and Alzheimer's disease (AD). This review focuses on the recent preclinical as well as clinical results that support the relevance of H3R antagonists for the treatment of cognitive symptoms in neuropsychiatric diseases, namely AD, epilepsy and SCH. The review summarizes the role of histaminergic neurotransmission with focus on these brain disorders, as well as the effects of numerous H3R antagonists on animal models and humans.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Receptores Histamínicos H3/fisiologia , Esquizofrenia/tratamento farmacológico , Animais , Encéfalo/fisiopatologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Antagonistas dos Receptores Histamínicos/administração & dosagem , Humanos , Memória/efeitos dos fármacos , Receptores Histamínicos/fisiologia
9.
J Cereb Blood Flow Metab ; 35(7): 1145-53, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25712499

RESUMO

Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood-brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoneally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hipóxia/complicações , Inflamação/tratamento farmacológico , Minociclina/uso terapêutico , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Animais , Antibacterianos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Masculino , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/imunologia , Ratos , Ratos Endogâmicos SHR , Substância Branca/imunologia , Substância Branca/lesões
10.
J Cereb Blood Flow Metab ; 34(5): 890-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549186

RESUMO

Small vessel disease is associated with white-matter (WM) magnetic resonance imaging (MRI) hyperintensities (WMHs) in patients with vascular cognitive impairment (VCI) and subsequent damage to the WM. Although WM is vulnerable to hypoxic-ischemic injury and O2 is critical in brain physiology, tissue O2 level in the WM has not been measured and explored in vivo. We hypothesized that spontaneously hypertensive stroke-prone rat (SHR/SP) fed a Japanese permissive diet (JPD) and subjected to unilateral carotid artery occlusion (UCAO), a model to study VCI, would lead to reduced tissue oxygen (pO2) in the deep WM. We tested this hypothesis by monitoring WM tissue pO2 using in vivo electron paramagnetic resonance (EPR) oximetry in SHR/SP rats over weeks before and after JPD/UCAO. The SHR/SP rats experienced an increase in WM pO2 from 9 to 12 weeks with a maximal 32% increase at week 12, followed by a dramatic decrease in WM pO2 to near hypoxic conditions during weeks 13 to 16 after JPD/UCAO. The decreased WM pO2 was accompanied with WM damage and hemorrhages surrounding microvessels. Our findings suggest that changes in WM pO2 may contribute to WM damage in SHR/SP rat model, and that EPR oximetry can monitor brain pO2 in the WM of small animals.


Assuntos
Infarto Encefálico/metabolismo , Encéfalo/patologia , Estenose das Carótidas/complicações , Hipertensão/complicações , Fibras Nervosas Mielinizadas/metabolismo , Oxigênio/metabolismo , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Infarto Encefálico/patologia , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Hipertensão/metabolismo , Hipertensão/patologia , Estudos Longitudinais , Masculino , Fibras Nervosas Mielinizadas/patologia , Oximetria , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
11.
Stroke ; 43(4): 1115-22, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22363061

RESUMO

BACKGROUND AND PURPOSE: Small vessel disease is the major cause of white matter injury in patients with vascular cognitive impairment. Matrix metalloproteinase (MMP)-mediated inflammation may be involved in the white matter damage with oligodendrocyte (Ol) death. Therefore, we used spontaneously hypertensive stroke-prone rats to study the role of neuroinflammation in white matter damage. METHODS: Permanent unilateral carotid artery occlusion was performed at 12 weeks of age in spontaneously hypertensive stroke-prone rats. Following surgery, rats were placed on a Japanese permissive diet and received 1% NaCl in drinking water. MRI, histology, biochemistry, and ELISA characterized white matter lesions, and cognitive impairment was tested by Morris water maze. RESULTS: White matter damage was observed 4 to 5 weeks following permanent unilateral carotid artery occlusion/Japanese permissive diet. Immunoblotting showed marked reduction in myelin basic protein and upregulation of immature Ols. Mature Ols underwent caspase-3-mediated apoptosis. Morris water maze showed cognitive impairment. Abnormally appearing vessels were observed and surrounded by inflammatory-like cells. IgG extravasation and hemorrhage, indicating blood-brain barrier (BBB) disruption, was closely associated with MMP-9 expression. Lesions in white matter showed reactive astrocytosis and activated microglia that expressed tumor necrosis factor-α. MMP-3 and MMP-9 were significantly increased, and MMP-2 was reduced in both astrocytes and Ol. CONCLUSIONS: We found apoptosis of mature Ols with an increase in immature Ols. Increased MMP-3, MMP-9, and tumor necrosis factor-α were associated with myelin breakdown and BBB disruption. Neuroinflammation is an important factor in white matter damage and Ol death, and studies using this new model can be performed to assess agents to block inflammation.


Assuntos
Apoptose , Córtex Cerebral/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Caspase 3/biossíntese , Córtex Cerebral/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Ratos , Ratos Endogâmicos SHR , Fator de Necrose Tumoral alfa/biossíntese
12.
J Neuroinflammation ; 8: 108, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21871134

RESUMO

BACKGROUND AND PURPOSE: Oligodendrocyte (OL) death is important in focal cerebral ischemia. TIMP-3 promotes apoptosis in ischemic neurons by inhibiting proteolysis of TNF-α superfamily of death receptors. Since OLs undergo apoptosis during ischemia, we hypothesized that TIMP-3 contributes to OL death. METHODS: Middle cerebral artery occlusion (MCAO) was induced in Timp-3 knockout (KO) and wild type (WT) mice with 24 or 72 h of reperfusion. Cell death in white matter was investigated by stereology and TUNEL. Mature or immature OLs were identified using antibodies against glutathione S-transferase-π (GST-π) and galactocerebroside (GalC), respectively. Expression and level of proteins were examined using immunohistochemistry and immunoblotting. Protein activities were determined using a FRET peptide. RESULTS: Loss of OL-like cells was detected at 72 h only in WT ischemic white matter where TUNEL showed greater cell death. TIMP-3 expression was increased in WT reactive astrocytes. GST-π was reduced in ischemic white matter of WT mice compared with WT shams with no difference between KO and WT at 72 h. GalC level was significantly increased in both KO and WT ischemic white matter at 72 h. However, the increase in GalC in KO mice was significantly higher than WT; most TUNEL-positive cells in ischemic white matter expressed GalC, suggesting TIMP-3 deficiency protects the immature OLs from apoptosis. There were significantly higher levels of cleaved caspase-3 at 72 h in WT white matter than in KO. Greater expression of MMP-3 and -9 was seen in reactive astrocytes and/or microglia/macrophages in WT at 72 h. We found more microglia/macrophages in WT than in KO, which were the predominant source of increased TNF-α detected in the ischemic white matter. TACE activity was significantly increased in ischemic WT white matter, which was expressed in active microglia/macrophages and OLs. CONCLUSIONS: Our results suggested that focal ischemia leads to proliferation of immature OLs in white matter and that TIMP-3 contributes to a caspase-3-dependent immature OL death via TNF-α-mediated neuroinflammation. Future studies will be needed to delineate the role of MMP-3 and MMP-9 that were increased in the Timp-3 wild type.


Assuntos
Proteínas ADAM/metabolismo , Isquemia Encefálica/fisiopatologia , Morte Celular/fisiologia , Oligodendroglia/fisiologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17 , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Transferência Ressonante de Energia de Fluorescência , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Oligodendroglia/citologia , Oligodendroglia/patologia , Inibidor Tecidual de Metaloproteinase-3/genética
13.
Ann N Y Acad Sci ; 1199: 95-104, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20633114

RESUMO

Acetyl-L-carnitine (ALCAR), an endogenous water soluble molecule, is synthesized in the brain and is involved in many aspects of neuronal activity, including metabolism and neuronal membrane formation and integrity. To determine ALCAR's neuroprotective effects, focal cerebral ischemia was induced using four models of middle cerebral artery occlusion (MCAO) and treatment with 0-400 mg/kg ALCAR (i.p.) prior to MCAO. While acute doses were without effect, pretreatment with chronic ALCAR (400 mg/kg/day for five days) significantly reduced infarct size. Lower chronic ALCAR doses were not effective. Additionally, elevations in microdialysate glutamate post-MCAO were attenuated by ALCAR treatment.


Assuntos
Acetilcarnitina/uso terapêutico , Isquemia Encefálica/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Animais , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA