Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420940

RESUMO

Here, a molecular imprinting technique was employed to create an SPR-based nanosensor for the selective and sensitive detection of organophosphate-based coumaphos, a toxic insecticide/veterinary drug often used. To achieve this, UV polymerization was used to create polymeric nanofilms using N-methacryloyl-l-cysteine methyl ester, ethylene glycol dimethacrylate, and 2-hydroxyethyl methacrylate, which are functional monomers, cross-linkers, and hydrophilicity enabling agents, respectively. Several methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) analyses, were used to characterize the nanofilms. Using coumaphos-imprinted SPR (CIP-SPR) and non-imprinted SPR (NIP-SPR) nanosensor chips, the kinetic evaluations of coumaphos sensing were investigated. The created CIP-SPR nanosensor demonstrated high selectivity to the coumaphos molecule compared to similar competitor molecules, including diazinon, pirimiphos-methyl, pyridaphenthion, phosalone, N-2,4(dimethylphenyl) formamide, 2,4-dimethylaniline, dimethoate, and phosmet. Additionally, there is a magnificent linear relationship for the concentration range of 0.1-250 ppb, with a low limit of detection (LOD) and limit of quantification (LOQ) of 0.001 and 0.003 ppb, respectively, and a high imprinting factor (I.F.4.4) for coumaphos. The Langmuir adsorption model is the best appropriate thermodynamic approach for the nanosensor. Intraday trials were performed three times with five repetitions to statistically evaluate the CIP-SPR nanosensor's reusability. Reusability investigations for the two weeks of interday analyses also indicated the three-dimensional stability of the CIP-SPR nanosensor. The remarkable reusability and reproducibility of the procedure are indicated by an RSD% result of less than 1.5. Therefore, it has been determined that the generated CIP-SPR nanosensors are highly selective, rapidly responsive, simple to use, reusable, and sensitive for coumaphos detection in an aqueous solution. An amino acid, which was used to detect coumaphos, included a CIP-SPR nanosensor manufactured without complicated coupling methods and labelling processes. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) studies was performed for the validation studies of the SPR.

2.
ACS Omega ; 8(1): 492-501, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643531

RESUMO

Drug dosage is a crucial subject in both human and animal treatment. Administering less drug dosage may prevent treatment or make it less effective, and high drug dosage may cause a heightened risk of adverse effects, or in some cases, cost a patient's life. Also, even when the dosage is administered carefully, metabolic differences may cause different effects on different patients. Because of these considerations, monitoring drug dosage in the body is a critical and significant requirement in the health industry. Within the scope of this study, a reusable surface plasmon resonance (SPR) chip with fast response, high selectivity, and no pretreatment is produced for the chemotherapeutic agent cabazitaxel. A cabazitaxel-imprinted nanofilm was synthesized on the sensor chip surface and characterized by atomic force microscopy, ellipsometry, and contact angle measurements. Standard cabazitaxel solution and an artificial plasma sample were used for the kinetic analysis. Docetaxel, methylprednisolone, and dexamethasone were analyzed for their selectivity experiment. In addition, the repeatability and storage durability of the sensor were also evaluated. As a result of the adsorption studies, the limit of detection and limit of quantitation values were found to be 0.012 and 0.036 µg/mL, respectively. High-performance liquid chromatography analysis was used to validate the response of the cabazitaxel-imprinted sensor.

3.
ACS Omega ; 7(20): 17175-17184, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647456

RESUMO

In this study, the molecularly imprinted polymers (MIPs) that will be formed by the sulfamethoxazole (SMX) molecule and methacrylic acid (MAA) molecule were examined theoretically. The most stable interaction region between the two molecules was determined in solvent environments (ethanol, acetonitrile, and dimethylsulfoxide), and monomer ratios (SMX/MAA; 1:1, 1:2, and 1:3) were examined to form the most stable geometry. The number and length of the hydrogen bonds formed between the template molecule and the functional monomer and the interaction between the atoms were determined. Geometry optimizations of the molecules were calculated by the DFT method at the M06-2X/ccpVTZ level, and single-point energy calculations were carried out at the B2PLYP-D3/ccpVDZ level. In addition to the theoretical studies, the experimental Fourier-transform infrared spectroscopy (FTIR) spectrum of the complex formed between SMX and MAA was compared with the theoretical FTIR spectrum. As a result of the studies, the monomer ratio and solvent environment in which the stable complex was formed were determined in the MIP studies carried out with the SMX template molecule and MAA monomer. The most stable template molecule-monomer ratio of the complex between SMX and MAA was determined to be 1:3, and the solvent medium in which the most stable geometry was formed was acetonitrile.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32416596

RESUMO

Adenosine is an important molecule in the human body because it participates various biochemical processes, signalling in the physiological processes, and neurological disorders. In the current study, the surface imprinting method was used to prepare adenosine-imprinted magnetic core-shell polyvinylbutyral microbeads. These microbeads were utilized for quantification of adenosine in aqueous solution and control plasma in the range of 1-200 µM. The limit of detection was found to be 1.9 nM, which is quite sensitive compared with to some earlier studies. Fourier transform infrared spectroscopy, scanning electron microscopy, and a Zetasizer (particle size analyzer) were used for characterization of the prepared imprinted microbeads. To determine the efficiency of this method, selectivity experiments were conducted with adenosine-imprinted and non-imprinted magnetic core-shell polyvinylbutyral microbeads and with the competitive nucleosides cytidine, uridine, guanosine, and thymidine. Thermodynamic and kinetic studies were performed to assess adsorption of adenosine onto the adenosine-imprinted magnetic core-shell polyvinylbutyral microbeads from adenosine solution. The efficiency was linked to the specific surface reactivity, polarity and porosity of the imprinted microbeads.


Assuntos
Adenosina/sangue , Adenosina/química , Microesferas , Impressão Molecular/métodos , Polivinil/química , Adenosina/farmacocinética , Humanos , Limite de Detecção , Imãs , Reprodutibilidade dos Testes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA