Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Viruses ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37632020

RESUMO

Aspen mosaic-associated virus (AsMaV) is a newly identified Emaravirus, in the family Fimoviridae, Bunyavirales, associated with mosaic symptoms in aspen trees (Populus tremula). Aspen trees are widely distributed in Europe and understanding the population structure of AsMaV may aid in the development of better management strategies. The virus genome consists of five negative-sense single-stranded RNA (-ssRNA) molecules. To investigate the genetic diversity and population parameters of AsMaV, different regions of the genome were amplified and analyzed and full-length sequence of the divergent isolates were cloned and sequenced. The results show that RNA3 or nucleoprotein is a good representative for studying genetic diversity in AsMaV. Developed RT-PCR-RFLP was able to identify areas with a higher number of haplotypes and could be applied for screening the large number of samples. In general, AsMaV has a conserved genome and based on the phylogenetic studies, geographical structuring was observed in AsMaV isolates from Sweden and Finland, which could be attributed to founder effects. The genome of AsMaV is under purifying selection but not distributed uniformly on genomic RNAs. Distant AsMaV isolates displayed amino acid sequence variations compared to other isolates, and bioinformatic analysis predicted potential post-translational modification sites in some viral proteins.


Assuntos
Vírus do Mosaico , Vírus Satélites , Finlândia , Suécia , Filogenia , Genética Populacional
2.
Front Plant Sci ; 9: 1597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467508

RESUMO

Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901-2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites: While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.

3.
PLoS One ; 13(3): e0193888, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494687

RESUMO

In declining birches (Betula sp.) from different European stands affected by the "birch leaf-roll disease" (BLRD) a novel virus is identified by means of RNA-Seq virome analysis. The virus represents a new member in the genus Badnavirus, family Caulimoviridae, tentatively named Birch leaf roll-associated virus (BLRaV) and it is the first badnavirus found to infect birch. Complete genome sequences (7,862-7,864 nucleotides) of three viral isolates of Finnish and German origin have been determined. The virus sequences show a typical badnavirus organization with three major open reading frames (ORFs) and a fourth potential ORF overlapping with the end of ORF3. ORFs 1-2-3 show low level of amino acid identity to the corresponding proteins encoded by other badnaviruses, reaching a maximum of 44% identity (ORF3). Grapevine vein-clearing virus appears as the closest badnavirus when considering the polymerase region. So far, we can exclude evidence for presence of endogenous BLRaV elements in the birch genome, while evidence for the episomal activity of BLRaV is provided. The viral population holds significant haplotype diversity, while co-infection by different BLRaV variants are observed in single hosts. BLRaV presence is associated with the BLRD in both silver (B. pendula) and downy birch (B. pubescens). These results challenge the earlier hypothesis of a causal role of Cherry leaf roll virus in BLRD. Further work is now needed to finally prove that BLRaV is the causal agent for the BLRD.


Assuntos
Badnavirus/genética , Betula/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , DNA Viral/genética , Variação Genética/genética , Genoma Viral/genética , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Proteínas Virais/genética
4.
Front Plant Sci ; 6: 104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798141

RESUMO

Bud break and height-growth of Scots pine (Pinus sylvestris L.) in the northern boreal zone in Lapland, Finland, was followed through the entire growing seasons in the periods 2001-2003 and 2008-2010 in sapling stands in two different locations in northern Finland set some 250 km apart along a latitudinal transect. Field measurements continued at the southern site also in 2011-2013. Air temperature was recorded hourly at the sites. A simple optimization algorithm (GA) was used to adjust parameters of the models predicting the timing of bud break of Scots pine in order to minimize the difference between observed and predicted dates. The models giving the best performance and century-long daily temperatures were used to reconstruct bud-break time series. The temperature observations were recorded for the period 1908-2014 in Sodankylä, which is located in-between the sapling stands in the north-south direction and for the period 1877-2014 in Karasjok, which is in Norway about 145 km north-west from the northernmost stand of this study. On average buds began to extend in the beginning of May in the southernmost stand and in mid-May in the northernmost stands, and the variation between years was in the range of 3 weeks. A simple day-length-triggered (fixed date) model predicted most accurately the date of bud break; root mean square error (RMSE) was 2 and 4 days in the northern and southern site, respectively. The reconstructed bud-break series indicated that based on temperature observations from Sodankylä, growth onset of Scots pine has clearly advanced since the 1960s, though it currently matches that of the early 1920s and early 1950s. The temperature record from Karasjok indicated a similar variation, though there was a weak linear trend advancing bud break by about 3-4 days over a 100-year period.

5.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156251

RESUMO

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Ciclo Hidrológico/fisiologia , Isótopos de Carbono/análise , Europa (Continente) , Geografia , Fatores de Tempo
6.
Glob Chang Biol ; 19(6): 1709-19, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23504999

RESUMO

Accurate modelling of long-term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is carried out by simulating the carbon isotope ratio of tree leaves (δ(13) Cleaf ) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ(13) Cstem ) measured at six sites in northern Europe. All three stomatal models fail to capture the observed interannual variability in the measured δ(13) Cstem time series. However, the Soil-Plant-Atmosphere (SPA) model performs significantly better than the Ball-Berry (BB) or COX models when tested for goodness-of-fit against measured δ(13) Cstem . The δ(13) Cleaf time series simulated using the SPA model are significantly positively correlated (P < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates interannual variability measured in δ(13) Cstem , but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO2 concentrations, and thus to quantify the associated physiological forcing, warrants further investigation.


Assuntos
Isótopos de Carbono/metabolismo , Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/fisiologia , Europa (Continente) , Estômatos de Plantas/metabolismo
7.
Tree Physiol ; 28(11): 1741-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18765379

RESUMO

Both drought and fungal disease increase needle litterfall of Scots pine (Pinus sylvestris L.) trees, but most factors causing annual variation in needle litterfall are poorly understood. We hypothesized that radial growth and weather conditions favorable to growth correlate positively with needle litterfall with a lag equal to the number of needle cohorts (here being 5-6). We studied the time series of needle litterfall, stem increment, pollen cone litter and daily weather conditions in a Scots pine stand over 43 years (1961-2004). The cross-correlations of standardized time series were estimated with various lags. Model predictions of annual needle litterfall were tested against independent data. Changes in annual growth and needle litterfall correlated with lags of 0 and 4 years. The best predictors for needle litterfall were May to mid July temperature sum with a lag of 4 years, May rainfall with a lag of 2 years and September temperature with a lag of 6 years. Pollen cone litter correlated negatively with needle litterfall with a lag of 2 years. The study provided empirical evidence that needle litterfall of Scots pine in northern Finland is influenced by needle production and needle mass development that occurred 4 to 6 years earlier.


Assuntos
Ecossistema , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Finlândia , Fatores de Tempo , Tempo (Meteorologia)
8.
Tree Physiol ; 28(1): 105-12, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938119

RESUMO

We estimated the date of onset (Date(est)) of cambial activity by the pinning method in Scots pine (Pinus sylvestris L.) trees at Vanttauskoski (Site 1) and Laanila (Site 2) near the latitudinal limit of Scots pine in northern Finland. In each year and at each site, observations were made on a different set of five trees. The estimated dates of onset of cambial activity were compared with the corresponding heat sums, calculated in degree-days according to two models. Within years, Date(est) varied among trees by up to 15 days at Site 1 and up to 13 days at Site 2. Among years, mean Date(est) varied by 15.3 days at Site 1 and 12.0 days at Site 2. The overall mean Date(est) differed between sites by 6 days (June 5 at Site 1 and June 11 at Site 2). Among all trees in all years, the mean number of degree days (d.d.) calculated from mean daily temperature above a threshold of 5 degrees C before Date(est) ranged from 68.7 to 135 d.d. at Site 1 and from 37.4 to 154.7 d.d. at Site 2. Among years, the mean heat sum before Date(est )ranged from 94 to 112.5 d.d. at Site 1 and from 61.4 to 136 d.d. at Site 2. Variation among years in heat sum before Date(est) at Site 2 was highly significant, indicating that one or more factors other than, or in addition to, heat sum determines the onset of cambial activity in Scots pine. Similar results were obtained when heat sum was computed from the area between the sine wave generated by daily maximum and minimum temperature and the threshold temperature.


Assuntos
Pinus sylvestris/fisiologia , Luz Solar , Finlândia , Geografia , Temperatura Alta , Pinus sylvestris/crescimento & desenvolvimento , Estações do Ano , Temperatura , Madeira
9.
Tree Physiol ; 27(9): 1347-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17545134

RESUMO

Intra-annual height growth of Scots pine (Pinus sylvestris L.) in four stands was followed for up to four growing seasons (2000-2003) in the northern boreal zone in Lapland. Elongation of the leader shoot correlated with temperature sum expressed as degree-days. Total length of the leader shoot correlated with growth rate but not with duration of the height-growth period. The longer the annual shoot at the end of the season, the greater the height increment per degree- and growing day. Height-growth cessation was defined as the date when 95% of the total shoot length was achieved. In all stands and all years, height growth ceased when, on average, 41% of the relative temperature sum of the site was achieved (range of variation 38-43%). The relative temperature sum was calculated by dividing the actual temperature sum by the long-term mean for the site. Our results suggest that annual height growth is finished when a location-specific temperature sum threshold is attained.


Assuntos
Clima Frio , Fotoperíodo , Pinus sylvestris/crescimento & desenvolvimento , Temperatura , Regiões Árticas , Finlândia , Modelos Biológicos , Estações do Ano
10.
Int J Biometeorol ; 50(4): 205-14, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16331502

RESUMO

The relationships between climatic variables and Scots pine (Pinus sylvestris L.) growth and needle dynamics were studied in three stands in Estonia and in four stands located near the northern timberline in Lapland. The trees sampled in Estonia had low correlations with the analysed climatic variables (air temperature, precipitation and indices of atmospheric circulation). Moreover, the weak cross-correlation of the time-series of the Estonian sample trees indicated that Scots pine is affected mainly by local factors in that region. In Lapland, however, height increment and needle production correlated strongly among trees within a stand (mean r=0.45 and 0.46, respectively) and between stands (r=0.32 and 0.37). Radial increment also showed a high inter-correlation among the trees within a stand in Lapland (r=0.45). Both height increment and needle production were strongly influenced by the temperature regime of the previous summer in Lapland (mean r=0.64 and 0.64, respectively). Radial increment was correlated with the mean July temperature of the current year (mean r=0.29). The correlations between the indices of atmospheric circulation and tree attributes were weak, while the strongest correlation was between the Ponta Delgada NAO index (PD-NAO) and height increment and needle production in Lapland. Height increment, needle production and radial increment have increased since the 1990s in the trees growing in Lapland. This may indicate a positive effect of climate warming on tree growth in Lapland. In Estonia, where climatic conditions do not limit tree growth, the climate warming seems not to directly influence the growth and needle dynamics of Scots pine.


Assuntos
Clima , Pinus sylvestris/crescimento & desenvolvimento , Estônia , Finlândia , Fatores de Tempo , Tempo (Meteorologia)
11.
Tree Physiol ; 25(10): 1265-71, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16076775

RESUMO

Latitudinal variation in needle longevity of conifers in response to climatic variability is a well-known phenomenon, but its significance has only rarely been studied. Scots pine (Pinus sylvestris L.) stands were investigated in four locations in Lapland (northern Finland and northern Sweden, 67-68 degrees N) and in four locations in Estonia (59 degrees N) to test the hypothesis that plasticity in needle longevity results in similar needle biomass per foliated shoot length across latitudes. The needle-trace method (NTM) revealed the dynamics of needle fascicles attached to stem shoots. Long-term mean needle age was 2 years greater in Lapland than in Estonia. In both regions, mean needle age was strongly and negatively related to yearly needle-fascicle production rate relative to the number of needles on the same shoot axis. Although significantly fewer needle-fascicles were produced annually in trees in Lapland than in Estonia, the overall number of fascicles attached to the stem shoots, needle-fascicle density and individual needle dry mass did not differ between regions. Consequently, needle biomass per foliated shoot length was similar in trees in both regions. Thus, our results support the theory that plasticity in needle longevity helps Scots pine to compensate for reduced needle production so that the same foliar biomass per shoot is retained under a wide range of growth conditions.


Assuntos
Pinus sylvestris/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Clima , Geografia , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA