Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Asian Nat Prod Res ; : 1-24, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078342

RESUMO

An imbalanced microbiome is linked to several diseases, such as cancer, inflammatory bowel disease, obesity, and even neurological disorders. Bacteria and their by-products are used for various industrial and clinical purposes. The metabolites under discussion were chosen based on their biological impacts on host and gut microbiota interactions as established by metabolome research. The separation of bacterial metabolites by using statistics and machine learning analysis creates new opportunities for applications of bacteria and their metabolites in the environmental and medical sciences. Thus, the metabolite production strategies, methodologies, and importance of bacterial metabolites for human well-being are discussed in this review.

2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794151

RESUMO

Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of -8.65 and -9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of -6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was -7.52 for beta-amyrin against Ebola and -6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675411

RESUMO

The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of Catharanthus roseus using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the Catharanthus roseus. The aqueous extracts from the leaves and stems of this plant have been observed to be most effective against food spoilage bacterial strains, followed by methanol and hexane. However, leaf extract was observed to be most significant in terms of the content and potency of metabolites. The minimum inhibitory concentration (20 µg/mL) and bactericidal concentrations (35 g/mL) of leaf extract were observed to be significant as compared to the ampicillin. Molecular docking showed that chlorogenic acid and vindolinine strongly interacted with the bacterial penicillin-binding protein. The docking energies of chlorogenic acid and vindolinine also indicated that these could be used as food preservatives. Therefore, the observed metabolite could be utilized as a potent antibacterial compound for food preservation or to treat their illness, and further research is needed to perform.

4.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338420

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical generally found in yew tree bark and has significant pharmacological properties, such as being anti-cancer, anti-inflammatory, and antioxidant. The binding affinity and inhibitory potency of taxifolin to these enzymes were evaluated through molecular docking and molecular dynamics simulations followed by the MMPBSA approach, and the results were significant. Taxifolin's affinity for binding to the AChE-taxifolin complex was -8.85 kcal/mol, with an inhibition constant of 326.70 nM. It was observed to interact through hydrogen bonds. In contrast, the BChE-taxifolin complex binding energy was observed to be -7.42 kcal/mol, and it was significantly nearly equal to the standard inhibitor donepezil. The molecular dynamics and simulation signified the observed interactions of taxifolin with the studied enzymes. The MMPBSA total free energy of binding for AChE-taxifolin was -24.34 kcal/mol, while BChE-taxifolin was -16.14 kcal/mol. The present research suggests that taxifolin has a strong ability to bind and inhibit AChE and BChE and could be used to manage neuron-associated problems; however, further research is required to explore taxifolin's neurological therapeutic potential using animal models of Alzheimer's disease.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Quercetina/análogos & derivados , Animais , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
5.
Biomolecules ; 13(11)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-38002295

RESUMO

Neurodegenerative disorders, such as Alzheimer's disease (AD), negatively affect the economic and psychological system. For AD, there is still a lack of disease-altering treatments and promising cures due to its complex pathophysiology. In this study, we computationally screened the natural database of fungal metabolites against three known therapeutic target proteins of AD. Initially, a pharmacophore-based, drug-likeness category was employed for screening, and it filtered the 14 (A-N) best hits out of 17,544 fungal metabolites. The 14 best hits were docked individually against GSK-3ß, the NMDA receptor, and BACE-1 to investigate the potential of finding a multitarget inhibitor. We found that compounds B, F, and L were immuno-toxic, whereas E, H, I, and J had a higher LD50 dose (5000 mg/kg). Among the examined metabolites, the Bisacremine-C (compound I) was found to be the most active molecule against GSK-3ß (ΔG: -8.7 ± 0.2 Kcal/mol, Ki: 2.4 × 106 M-1), NMDA (ΔG: -9.5 ± 0.1 Kcal/mol, Ki: 9.2 × 106 M-1), and BACE-1 (ΔG: -9.1 ± 0.2 Kcal/mol, Ki: 4.7 × 106 M-1). It showed a 25-fold higher affinity with GSK-3ß, 6.3-fold higher affinity with NMDA, and 9.04-fold higher affinity with BACE-1 than their native ligands, respectively. Molecular dynamic simulation parameters, such as RMSD, RMSF, Rg, and SASA, all confirmed that the overall structures of the targeted enzymes did not change significantly after binding with Bisacremine-C, and the ligand remained inside the binding cavity in a stable conformation for most of the simulation time. The most significant hydrophobic contacts for the GSK-3ß-Bisacremine-C complex are with ILE62, VAL70, ALA83, and LEU188, whereas GLN185 is significant for H-bonds. In terms of hydrophobic contacts, TYR184 and PHE246 are the most important, while SER180 is vital for H-bonds in NMDA-Bisacremine-C. THR232 is the most crucial for H-bonds in BACE-1-Bisacremine-C and ILE110-produced hydrophobic contacts. This study laid a foundation for further experimental validation and clinical trials regarding the biopotency of Bisacremine-C.


Assuntos
Doença de Alzheimer , N-Metilaspartato , Humanos , Simulação de Acoplamento Molecular , Glicogênio Sintase Quinase 3 beta/metabolismo , N-Metilaspartato/uso terapêutico , Farmacóforo , Doença de Alzheimer/metabolismo , Simulação de Dinâmica Molecular , Ligantes
6.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480259

RESUMO

Morganella morganii is a Gram-negative bacterial pathogen that causes bacteremia, urinary tract infections, intra-abdominal infections, chorioamnionitis, neonatal sepsis, and newborn meningitis. To control this bacterial pathogen a total of 3565 putative proteins targets in Morganella morganii were screened using comparative subtractive analysis of biochemical pathways annotated by the KEGG that did not share any similarities with human proteins. One of the targets, D-alanyl-D-alanine carboxypeptidase DacB [Morganella] was observed to be implicated in the majority of cell wall synthesis pathways, leading to its selection as a novel pharmacological target. The drug that interacted optimally with the identified target was observed to be Cefoperazone (DB01329) with the estimated free energy of binding -8.9 Kcal/mol. During molecular dynamics simulations; it was observed that DB01328-2exb and DB01329-2exb complexes showed similar values as the control FMX-2exb complex near 0.2 nm with better stability. Furthermore, MMPBSA total free energy calculation showed better binding energy than the control complex for DB01329-2exb interaction i.e. -31.50 (±0.93) kcal/mol. Our presented research suggested that D-alanyl-D-alanine carboxypeptidase DacB could be a therapeutic target and cefoperazone could be a promising ligand to inhibit the D-alanyl-D-alanine carboxypeptidase DacB protein of Morganella morganii. To identify prospective therapeutic and vaccine targets in Morganella morganii, this is the first computational and subtractive genomics investigation of various metabolic pathways exploring other therapeutic targets of Morganella morganii. In vitro/in vivo experimental validation of the identified target D-alanyl-D-alanine carboxypeptidase and the design of its inhibitors is suggested to figure out the best dose, the drug's effectiveness, and its toxicity.Communicated by Ramaswamy H. Sarma.

7.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111379

RESUMO

The complexity of Alzheimer's disease (AD) and several side effects of currently available medication inclined us to search for a novel natural cure by targeting multiple key regulatory proteins. We initially virtually screened the natural product-like compounds against GSK3ß, NMDA receptor, and BACE-1 and thereafter validated the best hit through molecular dynamics simulation (MDS). The results demonstrated that out of 2029 compounds, only 51 compounds exhibited better binding interactions than native ligands, with all three protein targets (NMDA, GSK3ß, and BACE) considered multitarget inhibitors. Among them, F1094-0201 is the most potent inhibitor against multiple targets with binding energy -11.7, -10.6, and -12 kcal/mol, respectively. ADME-T analysis results showed that F1094-0201 was found to be suitable for CNS drug-likeness in addition to their other drug-likeness properties. The MDS results of RMSD, RMSF, Rg, SASA, SSE and residue interactions indicated the formation of a strong and stable association in the complex of ligands (F1094-0201) and proteins. These findings confirm the F1094-0201's ability to remain inside target proteins' binding pockets while forming a stable complex of protein-ligand. The free energies (MM/GBSA) of BACE-F1094-0201, GSK3ß-F1094-0201, and NMDA-F1094-0201 complex formation were -73.78 ± 4.31 kcal mol-1, -72.77 ± 3.43 kcal mol-1, and -52.51 ± 2.85 kcal mol-1, respectively. Amongst the target proteins, F1094-0201 have a more stable association with BACE, followed by NMDA and GSK3ß. These attributes of F1094-0201 indicate it as a possible option for the management of pathophysiological pathways associated with AD.

8.
Nutrients ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049419

RESUMO

Alzheimer's disease (AD), the most common type of dementia in older people, causes neurological problems associated with memory and thinking. The key enzymes involved in Alzheimer's disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this, there is a lot of interest in finding new AChE inhibitors. Among compounds that are not alkaloids, flavonoids have stood out as good candidates. The apple fruit, Malus domestica (Rosaceae), is second only to cranberries regarding total phenolic compound concentration. Computational tools and biological databases were used to investigate enzymes and natural compounds. Molecular docking techniques were used to analyze the interactions of natural compounds of the apple with enzymes involved in the central nervous system (CNS), acetylcholinesterase, and butyrylcholinesterase, followed by binding affinity calculations using the AutoDock tool. The molecular docking results revealed that CID: 107905 exhibited the best interactions with AChE, with a binding affinity of -12.2 kcal/mol, and CID: 163103561 showed the highest binding affinity with BuChE, i.e., -11.2 kcal/mol. Importantly, it was observed that amino acid residue Trp286 of AChE was involved in hydrogen bond formation, Van Der Walls interactions, and Pi-Sigma/Pi-Pi interactions in the studied complexes. Moreover, the results of the Molecular Dynamics Simulation (MDS) analysis indicated interaction stability. This study shows that CID: 12000657 could be used as an AChE inhibitor and CID: 135398658 as a BuChE inhibitor to treat Alzheimer's disease and other neurological disorders.


Assuntos
Doença de Alzheimer , Malus , Humanos , Idoso , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Relação Estrutura-Atividade
9.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986433

RESUMO

Indole-tethered chromene derivatives were synthesised in a one-pot multicomponent reaction using N-alkyl-1H-indole-3-carbaldehydes, 5,5-dimethylcyclohexane-1,3-dione, and malononitrile, catalysed by DBU at 60-65 °C in a short reaction time. The benefits of the methodology include non-toxicity, an uncomplicated set-up procedure, a faster reaction time, and high yields. Moreover, the anticancer properties of the synthesised compounds were tested against selected cancer cell lines. The derivatives 4c and 4d displayed very good cytotoxic activity, with IC50 values ranging from 7.9 to 9.1 µM. Molecular docking revealed the potent derivatives have good binding affinity towards tubulin protein, better than the control, and the molecular dynamic simulations further demonstrated the stability of ligand-receptor interactions. Moreover, the derivatives followed all the drug-likeness filters.

10.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38256852

RESUMO

The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1ß, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.

11.
J Fungi (Basel) ; 8(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547621

RESUMO

Microbes are ubiquitous in the biosphere, and their therapeutic and ecological potential is not much more explored and still needs to be explored more. The bacilli are a heterogeneous group of Gram-negative and Gram-positive bacteria. Lysinibacillus are dominantly found as motile, spore-forming, Gram-positive bacilli belonging to phylum Firmicutes and the family Bacillaceae. Lysinibacillus species initially came into light due to their insecticidal and larvicidal properties. Bacillus thuringiensis, a well-known insecticidal Lysinibacillus, can control many insect vectors, including a malarial vector and another, a Plasmodium vector that transmits infectious microbes in humans. Now its potential in the environment as a piece of green machinery for remediation of heavy metal is used. Moreover, some species of Lysinibacillus have antimicrobial potential due to the bacteriocin, peptide antibiotics, and other therapeutic molecules. Thus, this review will explore the biological disease control abilities, food preservative, therapeutic, plant growth-promoting, bioremediation, and entomopathogenic potentials of the genus Lysinibacillus.

12.
Healthcare (Basel) ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36553945

RESUMO

Swansea University's United Kingdom (UK) Multiple Sclerosis (MS) Register is a platform that contains information on more than 17,600 people with MS living in the UK. The register has been in operation since 2011 and represents comprehensive information about people living with MS in the UK. It is considered the first register of its kind that can link information from patients to clinical data and has been established to answer different information needs about MS. Aim: To elucidate the trends in patterns of medicines currently used by people with MS in the UK MS register. Methods: This study follows an exploratory descriptive design using the UK MS register as data resource. A number of 4516 people completed the EQ-5D survey out of 8736 people who have given their consent to answer online questionnaires which represents around 52% of the register total population. Descriptive analysis and tests were performed with SPSS to address the research objectives. Results: There are several medicine names entered by people with MS in their profiles. These medicines are used either to manage MS symptoms or to treat its associated complications. Among the medicine types revealed in this study, disease modifying drugs (DMDs), muscle relaxants, and anticonvulsants are the medicine types mainly used by people with MS followed by antidepressant and antianxiety medicines. Conclusions: From the antidepressants used most widely, amitriptyline was chosen as a subject medicine for further investigation in the remaining studies of this research due to its high frequency use, the elevated depression rates discovered among people with MS who seek information on it online, and the high online content noted on websites about this medicine.

13.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 75-84, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495515

RESUMO

Protein tyrosine phosphatase-1B (PTP-1B) is a well-known therapeutic target for diabetes and obesity as it suppresses insulin and leptin signaling. PTP-1B deletion or pharmacological suppression boosted glucose homeostasis and insulin signaling without altering hepatic fat storage. Inhibitors of PTP-1B may be useful in the treatment of type 2 diabetes, and shikonin, a naturally occurring naphthoquinone dye pigment, is reported to inhibit PTP-1B and possess antidiabetic properties. Since the cell contains a large number of phosphatases, PTP-1B inhibitors must be effective and selective. To explore more about the mechanism underlying the inhibitor's efficacy and selectivity, we investigated its top four pharmacophores and used site-directed mutagenesis to insert amino acid mutations into PTP-1B as an extension of our previous study where we identified 4 pharmacophores of shikonin. The study aimed to examine the site-directed mutations like R24Y, S215E, and S216C influence the binding of shikonin pharmacophores, which act as selective inhibitors of PTP-1B. To achieve this purpose, docking and molecular dynamics simulations of wild-type (WT) and mutant PTP-1B with antidiabetic compounds were undertaken. The simulation results revealed that site-directed mutations can change the hydrogen bond and hydrophobic interactions between shikonin pharmacophores and many residues in PTP-1B's active site, influencing the drug's binding affinity. These findings could aid researchers in better understanding PTP-1B inhibitors' selective binding mechanism and pave the path for the creation of effective PTP-1B inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ligação Proteica , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico
14.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362351

RESUMO

Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Plantas Medicinais , Viroses , Humanos , COVID-19/epidemiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , SARS-CoV-2 , Surtos de Doenças/prevenção & controle , Viroses/tratamento farmacológico , Plantas Medicinais/metabolismo
15.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355520

RESUMO

Anthraquinones (AQs) are present in foods, dietary supplements, pharmaceuticals, and traditional treatments and have a wide spectrum of pharmacological activities. In the search for anti-cancer drugs, AQ derivatives are an important class. In this study, anthraquinone aglycons chrysophanol (Chr), emodin (EM) and FDA-approved anticancer drug fluorouracil were analyzed by molecular docking studies against receptor molecules caspase-3, apoptosis regulator Bcl-2, TRAF2 and NCK-interacting protein kinase (TNIK) and cyclin-dependent protein kinase 2 (CDK2) as novel candidates for future anticancer therapeutic development. The ADMET SAR database was used to predict the toxicity profile and pharmacokinetics of the Chr and EM. Furthermore, in silico results were validated by the in vitro anticancer activity against HCT-116 and HeLa cell lines to determine the anticancer effect. According to the docking studies simulated by the docking program AutoDock Vina 4.0, Chr and EM had good binding energies against the target proteins. It has been observed that Chr and EM show stronger molecular interaction than that of the FDA-approved anticancer drug fluorouracil. In the in vitro results, Chr and EM demonstrated promising anticancer activity in HCT-116 and HeLa cells. These findings lay the groundwork for the potential use of Chr and EM in the treatment of human colorectal and cervical carcinomas.

16.
Genes (Basel) ; 13(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36292606

RESUMO

Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.


Assuntos
Azoospermia , Infertilidade Masculina , Teratozoospermia , Masculino , Humanos , Teratozoospermia/genética , Teratozoospermia/metabolismo , Azoospermia/diagnóstico , Azoospermia/genética , Sêmen/metabolismo , Infertilidade Masculina/genética , Biomarcadores , RNA
17.
Arab J Chem ; 15(12): 104366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36276298

RESUMO

We report microwave synthesis of seven unique pyrimidine anchored derivatives (1-7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1-7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1-7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1-7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of -8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1-7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of -0.03 and -0.018, respectively and absence of AMES toxicity.

18.
Curr Pharm Des ; 28(46): 3706-3719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278465

RESUMO

BACKGROUND: In late 2019, a highly infectious and pathogenic coronavirus was recognized as Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), which causes acute respiratory disease, threatening human health and public safety. A total of 448,327,303 documented cases and 6,028,576 deaths have been reported as of March 8th 2022. The COVID-19 vaccines currently undergoing clinical trials or already in use should provide at least some protection against SARS-CoV-2; however, the emergence of new variations as a result of mutations may lessen the effectiveness of the currently available vaccines. Since the efficacy of available drugs and vaccines against COVID-19 is notably lower, there is an urgent need to develop a potential drug to treat this deadly disease. The SARS-CoV-2 spike (SCoV-SG) is the foremost drug target among coronaviruses. OBJECTIVE: The major objectives of the current study are to conduct a molecular docking study investigation of TAT-peptide47-57(GRKKRRQRRRP)-conjugated remodified therapeutics such as ritonavir (RTV), lopinavir (LPV), favipiravir (FPV), remdesivir (RMV), hydroxychloroquine (HCQ), molnupiravir (MNV) and nirmatrelvir (NMV) with (SCoV-SG) structure. METHODS: Molecular docking analysis was performed to study the interaction of repurposed drugs and drugs conjugated with the TAT-peptide with target SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) using Auto- Dock. Further docking investigation was completed with PatchDock and was visualized by the discovery of the studio visualizer 2020. RESULTS: TAT-peptides are well-characterized immune enhancers that are used in intracellular drug delivery. The results of molecular docking analysis showed higher efficiency and significantly enhanced and improved interactions between TP-conjugated repurposed drugs and the target sites of the SCoV-SG structure. CONCLUSION: The study concluded that TP-conjugated repurposed drugs may be effective in preventing COVID- 19, and therefore, in vitro, in vivo, and clinical trial studies are required in detail.


Assuntos
COVID-19 , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Vacinas contra COVID-19 , Preparações Farmacêuticas , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Glicoproteína da Espícula de Coronavírus , Peptídeos , Glicoproteínas
19.
Drug Des Devel Ther ; 16: 1963-1974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783198

RESUMO

Introduction: Numerous drugs with potent toxicity against cancer cells are available for treating malignancies, but therapeutic efficacies are limited due to their inefficient tumor targeting and deleterious effects on non-cancerous tissue. Therefore, two improvements are mandatory for improved chemotherapy 1) novel delivery techniques that can target cancer cells to deliver anticancer drugs and 2) methods to specifically enhance drug efficacy within tumors. The loading of inert drug carriers with anticancer agents and peptides which are able to bind (target) tumor-related proteins to enhance tumor drug accumulation and local cytotoxicity is a most promising approach. Objective: To evaluate the anticancer efficacy of Chitosan nanoparticles loaded with human growth hormone hGH fragment 176-191 peptide plus the clinical chemotherapeutic doxorubicin in comparison with Chitosan loaded with doxorubicin alone. Methods: Two sets of in silico experiments were performed using molecular docking simulations to determine the influence of hGH fragment 176-191 peptide on the anticancer efficacy of doxorubicin 1) the binding affinities of hGH fragment 176-191 peptide to the breast cancer receptors, 2) the effects of hGH fragment 176-191 peptide binding on doxorubicin binding to these same receptors. Further, the influence of hGH fragment 176-191 peptide on the anticancer efficacy of doxorubicin was validated using viability assay in Human MCF-7 breast cancer cells. Results: In silico analysis suggested that addition of the hGH fragment to doxorubicin-loaded Chitosan nanoparticles can enhance doxorubicin binding to multiple breast cancer protein targets, while photon correlation spectroscopy revealed that the synthesized dual-loaded Chitosan nanoparticles possess clinically favorable particle size, polydispersity index, as well as zeta potential. Conclusion: These dual-loaded Chitosan nanoparticles demonstrated greater anti-proliferative activity against a breast cancer cell line (MCF-7) than doxorubicin-loaded Chitosan. This dual-loading strategy may enhance the anticancer potency of doxorubicin and reduce the clinical side effects associated with non-target tissue exposure.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quitosana , Hormônio do Crescimento Humano , Nanopartículas , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Quitosana/farmacologia , Doxorrubicina , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Nanopartículas/química , Peptídeos/uso terapêutico
20.
Life (Basel) ; 12(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888166

RESUMO

The COVID-19 era has prompted several researchers to search for a linkage between COVID-19 and its associated neurological manifestation. Toll-like receptor 4 (TLR-4) acts as one such connecting link. spike protein of SARS-CoV-2 can bind either to ACE-2 receptors or to TLR-4 receptors, leading to aggregation of α-synuclein and neurodegeneration via the activation of various cascades in neurons. Recently, dithymoquinone has been reported as a potent multi-targeting candidate against SARS-CoV-2. Thus, in the present study, dithymoquinone and its six analogues were explored to target 3CLpro (main protease of SARS-CoV-2), TLR4 and PREP (Prolyl Oligopeptidases) by using the molecular docking and dynamics approach. Dithymoquinone (DTQ) analogues were designed in order to investigate the effect of different chemical groups on its bioactivity. It is noteworthy to mention that attention was given to the feasibility of synthesizing these analogues by a simple photo-dimerisation reaction. The DTQ analogue containing the 4-fluoroaniline moiety [Compound (4)] was selected for further analysis by molecular dynamics after screening via docking-interaction analyses. A YASARA structure tool built on the AMBER14 force field was used to analyze the 100 ns trajectory by taking 400 snapshots after every 250 ps. Moreover, RMSD, RoG, potential energy plots were successfully obtained for each interaction. Molecular docking results indicated strong interaction of compound (4) with 3CLpro, TLR4 and PREP with a binding energy of -8.5 kcal/mol, -10.8 kcal/mol and -9.5 kcal/mol, respectively, which is better than other DTQ-analogues and control compounds. In addition, compound (4) did not violate Lipinski's rule and showed no toxicity. Moreover, molecular dynamic analyses revealed that the complex of compound (4) with target proteins was stable during the 100 ns trajectory. Overall, the results predicted that compound (4) could be developed into a potent anti-COVID agent with the ability to mitigate neurological manifestations associated with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA