RESUMO
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
RESUMO
Leishmaniasis is a disease caused by the parasite Leishmania donovani affecting populations belonging to developing countries. The present study explores drug repurposing as an innovative strategy to identify new uses for approved clinical drugs, reducing the time and cost required for drug discovery. The three-dimensional structure of Leishmania donovani Sterol C-24 methyltransferase (LdSMT) was modeled and 1615 FDA-approved drugs from the ZINC database were computationally screened to identify the potent leads. Fulvestrant, docetaxel, indocyanine green, and iohexol were shortlisted as potential leads with the highest binding affinity and fitness scores for the concerned pathogenic receptor. Molecular dynamic simulation studies showed that the macromolecular complexes of indocyanine green and iohexol with LdSMT remained stable throughout the simulation and can be further evaluated experimentally for developing an effective drug. The proposed leads have further demonstrated promising safety profiles during cytotoxicity analysis on the J774.A1 macrophage cell line. Mechanistic analysis with these two drugs also revealed significant morphological alterations in the parasite, along with reduced intracellular parasitic load. Overall, this study demonstrates the potential of drug repurposing in identifying new treatments for leishmaniasis and other diseases affecting developing countries, highlighting the importance of considering approved clinical drugs for new applications.