Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 16(2): e0247377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635930

RESUMO

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and ß) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7-10 days. A short-term co-culture (10-11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAß2, NKAß3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


Assuntos
Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Estimulação Elétrica , Regulação da Expressão Gênica , Humanos , Contração Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos
2.
Appl Physiol Nutr Metab ; 46(4): 299-308, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32758102

RESUMO

Contraction-induced adaptations in skeletal muscles are well characterized in vivo, but the underlying cellular mechanisms are still not completely understood. Cultured human myotubes represent an essential model system for human skeletal muscle that can be modulated ex vivo, but they are quiescent and do not contract unless being stimulated. Stimulation can be achieved by innervation of human myotubes in vitro by co-culturing with embryonic rat spinal cord, or by replacing motor neuron activation by electrical pulse stimulation (EPS). Effects of these two in vitro approaches, innervation and EPS, were characterized with respects to the expression of myosin heavy chains (MyHCs) and metabolism of glucose and oleic acid in cultured human myotubes. Adherent human myotubes were either innervated with rat spinal cord segments or exposed to EPS. The expression pattern of MyHCs was assessed by quantitative polymerase chain reaction, immunoblotting, and immunofluorescence, while the metabolism of glucose and oleic acid were studied using radiolabelled substrates. Innervation and EPS promoted differentiation towards different fiber types in human myotubes. Expression of the slow MyHC-1 isoform was reduced in innervated myotubes, whereas it remained unaltered in EPS-treated cells. Expression of both fast isoforms (MyHC-2A and MyHC-2X) tended to decrease in EPS-treated cells. Both approaches induced a more oxidative phenotype, reflected in increased CO2 production from both glucose and oleic acid. Novelty: Innervation and EPS favour differentiation into different fiber types in human myotubes. Both innervation and EPS promote a metabolically more oxidative phenotype in human myotubes.


Assuntos
Diferenciação Celular , Estimulação Elétrica , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/inervação , Cadeias Pesadas de Miosina/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Ácido Oleico/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Medula Espinal
3.
Am J Physiol Cell Physiol ; 315(6): C803-C817, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230919

RESUMO

AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenosina/genética , Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleosídeos/biossíntese , Nucleosídeos/genética , Proteínas Quinases/metabolismo , Ribonucleotídeos/biossíntese , Ribonucleotídeos/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Vitamina B 12/química , Vitamina B 12/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA