Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Childs Nerv Syst ; 40(3): 933-937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982875

RESUMO

Glioblastoma (GBM) is a rare primary brain tumor in children, and extracranial metastases of pediatric GBM are particularly uncommon. We present the case of a 10-year-old girl with pediatric GBM who developed multiple extracranial metastases, including cervical lymph nodes, spine, and lung. We discuss the rarity of extracranial metastases in GBM and explore possible mechanisms of dissemination. The patient underwent surgical resections, radiotherapy, and chemotherapy, but the metastatic disease progressed despite treatment. We emphasize the need to consider extracranial metastases in pediatric GBM patients and adopt multimodal treatment approaches for managing this rare clinical entity. As the survival rates of pediatric GBM patients are improving, awareness of extracranial metastases is crucial for optimizing treatment outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Feminino , Criança , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia Combinada , Resultado do Tratamento
2.
Cell Biol Toxicol ; 39(5): 1873-1896, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34973135

RESUMO

BACKGROUND AND PURPOSE: Histone deacetylase (HDAC) inhibitors (HDIs) can modulate the epithelial-mesenchymal transition (EMT) progression and inhibit the migration and invasion of cancer cells. Emerging as a novel class of anti-cancer drugs, HDIs are attracted much attention in the field of drug discovery. This study aimed to discern the underlying mechanisms of Honokiol in preventing the metastatic dissemination of gastric cancer cells by inhibiting HDAC3 activity/expression. EXPERIMENTAL APPROACH: Clinical pathological analysis was performed to determine the relationship between HDAC3 and tumor progression. The effects of Honokiol on pharmacological characterization, functional, transcriptional activities, organelle structure changes, and molecular signaling were analyzed using binding assays, differential scanning calorimetry, luciferase reporter assay, HDAC3 activity, ER stress response element activity, transmission electron microscopy, immune-blotting, and Wnt/ß-catenin activity assays. The in vivo effects of Honokiol on peritoneal dissemination were determined by a mouse model and detected by PET/CT tomography. KEY RESULTS: HDAC3 over-expression was correlated with poor prognosis. Honokiol significantly abolished HDAC3 activity (Y298) via inhibition of NFκBp65/CEBPß signaling, which could be reversed by the over-expression of plasmids of NFκBp65/CEBPß. Treatments with 4-phenylbutyric acid (a chemical chaperone) and calpain-2 gene silencing inhibited Honokiol-inhibited NFκBp65/CEBPß activation. Honokiol increased ER stress markers and inhibited EMT-associated epithelial markers, but decreased Wnt/ß-catenin activity. Suppression of HDAC3 by both Honokiol and HDAC3 gene silencing decreased cell migration and invasion in vitro and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS: Honokiol acts by suppressing HDAC3-mediated EMT and metastatic signaling. By prohibiting HDAC3, metastatic dissemination of gastric cancer may be blocked. Conceptual model showing the working hypothesis on the interaction among Honokiol, HDAC3, and ER stress in the peritoneal dissemination of gastric cancer. Honokiol targeting HDAC3 by ER stress cascade and mitigating the peritoneal spread of gastric cancer. Honokiol-induced ER stress-activated calpain activity targeted HDAC3 and blocked Tyr298 phosphorylation, subsequently blocked cooperating with EMT transcription factors and cancer progression. The present study provides evidence to demonstrate that HDAC3 is a positive regulator of EMT and metastatic growth of gastric cancer cells. The findings here imply that overexpressed HDAC3 is a potential therapeutic target for honokiol to reverse EMT and prevent gastric cancer migration, invasion, and metastatic dissemination. • Honokiol significantly abolished HDAC3 activity on catalytic tyrosine 298 residue site. In addition, Honokiol-induced ER stress markedly inhibited HDAC3 expression via inhibition of NFκBp65/CEBPß signaling. • HDAC3, which is a positive regulator of metastatic gastric cancer cell growth, can be significantly inhibited by Honokiol. • Opportunities for HDAC3 inhibition may be a potential therapeutic target for preventing gastric cancer metastatic dissemination.


Assuntos
Neoplasias Gástricas , beta Catenina , Animais , Camundongos , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Histona Desacetilases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Histona Desacetilases
3.
J Multidiscip Healthc ; 15: 1083-1088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586076

RESUMO

The COVID-19 pandemic has reaffirmed the critical significance of effective diagnostics in outbreak response. In Taiwan, the COVID-19 wave in May 2021 led to a rapidly growing demand for SARS-CoV-2 diagnostic tests. To meet the challenge, an extensive system-wide emergency preparedness plan, hospital emergency incident command system (HEICS), was developed to deal with emergencies involving healthcare systems. During the wave of the COVID-19 outbreak, a 19.4-fold increase in SARS-CoV-2 PCR (polymerase chain reaction) diagnostic tests occurred in the hospital. The incident commander of TCVGH reviewed COVID-19 related events daily and purchased a high-throughput PCR machine for SARS-CoV-2 PCR diagnostic tests. In addition, the Department of Operations was responsible for staff scheduling and educational training. The turn-around times of SARS-CoV-2 diagnostic tests were shortened from 21.2 hours to 5.8 hours in the second week of the COVID-19 wave. Implementation of HEICS integrated resources could be helpful for expanding surge capacity during future outbreaks.

4.
Toxins (Basel) ; 13(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34437439

RESUMO

Chronic kidney disease (CKD) is a commonly occurring complex renal syndrome that causes overall mortality in many diseases. The clinical manifestations of CKD include renal tubulointerstitial fibrosis and loss of renal function. Metallothionein-I/II (MT-I/II) is potentially expressed in the liver and kidney, and possesses antioxidant and metal detoxification properties. However, whether MT-I/II expression is associated with the prognosis of nephropathy remains unknown. In this study, we investigated the MT-I/II level in human CKD, using immunohistochemistry. MT-I/II is located on the proximal tubules and is notably reduced in patients with CKD. MT-I/II expression was significantly correlated with the functional and histological grades of CKD. In an aristolochic acid (AAI)-induced nephropathy mouse model, MT-I/II was abundantly increased after AAI injection for 7 days, but decreased subsequently compared to that induced in the acute phase when injected with AAI for 28 days. Furthermore, we found that ammonium pyrrolidinedithiocarbamate (PDTC) restored AAI-induced MT-I/II reduction in HK2 cells. The injection of PDTC ameliorated AAI-induced renal tubulointerstitial fibrosis and reduced the concentrations of blood urea nitrogen and creatinine in mouse sera. Taken together, our results indicate that MT-I/II reduction is associated with advanced CKD, and the retention of renal MT-I/II is a potential therapeutic strategy for CKD.


Assuntos
Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Metalotioneína/efeitos adversos , Metalotioneína/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Aging (Albany NY) ; 12(8): 7511-7533, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32330120

RESUMO

Inflammation of the vascular microenvironment modulates distinct types of vascular cells, and plays important roles in promoting atherosclerosis, stenosis/restenosis, and vascular-related diseases. Nik-related kinase (Nrk), a member of the Ste20-type kinase family, has been reported to be selectively expressed in embryonic skeletal muscle. However, whether Nrk is expressed in adult vascular smooth muscle, and if it influences intimal hyperplasia is unclear. Here, we found that Nrk is abundantly expressed in cultured vascular smooth muscle cells (VSMC) and mouse arterial intima. Treatment of mouse VSMCs with lipopolysaccharide (LPS) or platelet-derived growth factor significantly reduced Nrk expression. In addition, expression of Nrk was significantly reduced in regions of neointimal formation caused by guide-wire carotid artery injuries in mice, as well as in human atherosclerotic tissues, when compared to normal vessels. We identified that expression of matrix metalloproteinases (MMP3, MMP8 and MMP12) and inflammatory cytokines/chemokines (CCL6, CCL8, CCL11, CXCL1, CXCL3, CXCL5 and CXCL9) are synergistically induced by Nrk siRNA in LPS-treated mouse VSMCs. Moreover, we found that resveratrol significantly impaired LPS- and Nrk siRNA-induced expression of MMP3, CCL8, CCL11, CXCL3 and CXCL5. These results suggested that Nrk may play important roles in regulating pathological progression of atherosclerosis or neointimal- hyperplasia-related vascular diseases.


Assuntos
Lesões das Artérias Carótidas/genética , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA/genética , Túnica Íntima/metabolismo , Animais , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Masculino , Camundongos , Músculo Liso Vascular/patologia , Proteínas Serina-Treonina Quinases/biossíntese , Túnica Íntima/lesões , Túnica Íntima/patologia
6.
Cell Death Dis ; 10(6): 408, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138789

RESUMO

Decreased expression of metallothionein-1 (MT-1) is associated with a poor prognosis in hepatocellular carcinoma (HCC). Here, we found that MT-1 expression was suppressed by 14-3-3ε, and MT-1 overexpression abolished 14-3-3ε-induced cell proliferation and tumor growth. We identified that 14-3-3ε induced expression of ZNF479, a novel potential transcriptional regulator by gene expression profiling and ZNF479 contributed to 14-3-3ε-suppressed MT-1 expression. ZNF479 induced the expression of DNMT1, UHRF1, and mixed-lineage leukemia (MLL) complex proteins (ASH2L and Menin), and increased tri-methylated histone H3 (H3K4me3) levels, but suppressed H3K4 (H3K4me2) di-methylation. ZNF479-suppressed MT-1 expression was restored by silencing of ASH2L and DNMT1. Furthermore, ZNF479 expression was higher in HCC tissues than that in the non-cancerous tissues. Expression analyses revealed a positive correlation between the expression of ZNF479 and DNMT1, UHRF1, ASH2L, and Menin, and an inverse correlation with that of ZNF479, ASH2L, Menin, and MT-1 isoforms. Moreover, correlations between the expression of ZNF479 and its downstream factors were more pronounced in HCC patients with hepatitis B. Here, we found that ZNF479 regulates MT-1 expression by modulating ASH2L in HCC. Approaches that target ZNF479/MLL complex/MT-1 or related epigenetic regulatory factors are potential therapeutic strategies for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Metalotioneína/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteínas de Ligação a DNA/genética , Elafina/antagonistas & inibidores , Elafina/genética , Elafina/metabolismo , Células Hep G2 , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Metalotioneína/genética , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Transplante Heterólogo
7.
Cancers (Basel) ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717276

RESUMO

Focal adhesion kinase (FAK) plays an important role in vascular development, including the regulation of endothelial cell (EC) adhesion, migration, proliferation, and survival. 3'-deoxyadenosine (cordycepin) is known to suppress FAK expression, cell migration, and the epithelial⁻mesenchymal transition in hepatocellular carcinoma (HCC). However, whether cordycepin affects FAK expression and cellular functions in ECs and the specific molecular mechanism remain unclear. In this study, we found that cordycepin suppressed FAK expression and the phosphorylation of FAK (p-FAK) at Tyr397 in ECs. Cordycepin inhibited the proliferation, wound healing, transwell migration, and tube formation of ECs. Confocal microscopy revealed that cordycepin significantly reduced FAK expression and decreased focal adhesion number of ECs. The suppressed expression of FAK was accompanied by induced p53 and p21 expression in ECs. Finally, we demonstrated that cordycepin suppressed angiogenesis in an in vivo angiogenesis assay and reduced HCC tumor growth in a xenograft nude mice model. Our study indicated that cordycepin could attenuate cell proliferation and migration and may result in the impairment of the angiogenesis process and tumor growth via downregulation of FAK and induction of p53 and p21 in ECs. Therefore, cordycepin may be used as a potential adjuvant for cancer therapy.

8.
Cancer Lett ; 442: 113-125, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391358

RESUMO

There is increasing global incidence of highly metastatic melanoma and therapeutic strategies like those focusing on the downstream beta-catenin/MITF axis of invading melanoma cells are urgently needed. Targeting endoplasmic reticulum (ER) stress can promote cancer cell death and inhibit epithelial mesenchymal transition (EMT) in metastatic tumors. This study aimed to determine if Honokiol could promote ER stress-dependent apoptosis and regulate metastatic melanoma. The therapeutic efficacy of Honokiol was assessed using the highly metastatic melanoma xenograft mouse model for peritoneal metastasis and evaluated by computed tomography imaging. The ER stress marker, Calpain-10, delineated a novel proteolytic cleavage enzyme, while CHOP/GADD153-regulated apoptosis was used for gene silencing to determine the role of the ß-catenin/MITF axis in melanoma cells. The results showed that Honokiol effectively decreased peritoneal dissemination and organ metastasis via ER stress activation and EMT marker inhibition. Knockdown Calpain-10 or CHOP/GADD153 blocked all of the biological effects in Honokiol-induced ß-catenin/MITF cleavage, ERSE or TCF/LEF luciferase activity, and ß-catenin kinase activity. These findings suggest that Honokiol can significantly thwart the progression of highly metastatic melanoma using the ß-catenin/MITF axis via prompt Calpain-10 and CHOP/GADD153 regulated cascades.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lignanas/farmacologia , Melanoma/tratamento farmacológico , Fator de Transcrição Associado à Microftalmia/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Fator de Transcrição CHOP/metabolismo , beta Catenina/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fator de Transcrição CHOP/genética , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
9.
Anticancer Res ; 38(12): 6855-6863, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504401

RESUMO

BACKGROUND/AIM: Expression of 14-3-3ε is associated with prognostic outcomes of hepatocellular carcinoma (HCC) patients. Metallothionein-1 (MT-1) proteins and aldo-keto-reductase family 1 B10 (AKR1B10) are considered potential tumor regulators of HCC. The aim of this study, was to examine the prognostic value of 14-3-3ε, MT-1 and AKR1B10 expression in HCC. MATERIALS AND METHODS: The expression levels of 14-3-3ε, MT-1 and AKR1B10 in HCC cell lines and paraffin-embedded tissues were examined by western blotting and immunohistochemical analysis. RESULTS: 14-3-3ε positivity was significantly associated with decreased MT-1 expression in HCC. Patients with decreased MT-1 expression had worse survival rates and a higher risk of metastasis than 14-3-3ε-positive HCC patients with unchanged MT-1 expression. Distinct expression patterns of 14-3-3ε/MT-1/AKR1B10 were significantly associated with the metastatic incidence and survival rates of HCC patients. Patients with negative 14-3-3ε staining in primary tumors had better prognostic outcomes. In contrast, patients with positive 14-3-3ε staining, decreased MT-1 expression and no increase in AKR1B10 expression in primary tumors had the worst overall and disease-free survival rates and the highest metastatic risk. CONCLUSION: 14-3-3ε, AKR1B10, and MT-1 act as potential prognostic biomarkers of HCC.


Assuntos
Proteínas 14-3-3/metabolismo , Aldeído Redutase/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Metalotioneína/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldo-Ceto Redutases , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Hepatocelular/patologia , Feminino , Células Hep G2 , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas
11.
Cancer Sci ; 109(11): 3564-3574, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30142696

RESUMO

Androgen receptor (AR), an androgen-activated transcription factor, belongs to the nuclear receptor superfamily. AR plays an important role in the development and progression of prostate cancer (PCa). However, the role of AR in PCa metastasis is not fully understood. To investigate the role of AR in PCa metastasis, we examined AR expression level in primary and metastatic PCa by analyzing gene array data of 378 primary prostate tumors and 120 metastatic prostate tumors from Oncomine, as well as carrying out immunohistochemical (IHC) staining of 56 prostate cancer samples. Expression of mRNA and protein of AR as well as its target gene prostate-specific antigen (PSA) was much higher in metastatic prostate tumors than in primary prostate tumors. Knockdown of AR with siRNA or treating with anti-androgen Casodex reduced migration and invasion ability of C4-2B PCa cells. Knockdown of AR increased protein expression of E-cadherin and AR coregulator KAT5 but reduced expression of epithelial-mesenchymal transition (EMT) marker proteins Slug, Snail, MMP-2, vimentin, and ß-catenin. Knockdown of KAT5 increased migration of C4-2B cells, whereas overexpression of KAT5 suppressed cell migration. KAT5 knockdown rescues the suppressive effect of AR knockdown on migration of C4-2B cells. Gene expression level of AR and KAT5 showed a negative correlation. PCa patients with higher AR expression or lower KAT5 expression correlated with shorter recurrence-free survival. Our study suggested that elevation of AR expression and AR signaling in prostate tumors promotes PCa metastasis by induction of EMT and reduction of KAT5.


Assuntos
Lisina Acetiltransferase 5/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina Acetiltransferase 5/metabolismo , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/metabolismo , Análise de Sobrevida
12.
J Chin Med Assoc ; 81(4): 348-351, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28988599

RESUMO

BACKGROUND: In order to prevent over treatment of prostate cancer and significant adverse effects after surgical intervention, active surveillance was suggested in low risk or very low risk patients. This study aimed to retrospectively analyze the adverse pathological results of candidates eligible for active surveillance. METHODS: A total of 904 patients underwent robot-assisted laparoscopic radical prostatectomy in this single institute, from 2005 to April 2014. One hundred and thirty-two patients were eligible for active surveillance (AS). Candidates for active surveillance were defined as low risk (T1/T2a, prostate specific antigen 10 ng/ml or less, and Gleason score 6 or less) and very low risk (T1c, prostate specific antigen density 0.15 or less, Gleason score 6 or less, 2 or fewer positive biopsy cores, 50% or less cancer involvement per core) patients. Adverse pathological results were defined as Gleason sum more than 6, and non-organ-confined disease. RESULTS: There were 132 patients eligible for active surveillance. One hundred and thirteen (85.6%, 113/132) patients had low risk disease and nineteen (14.4%, 19/132) patients had very low risk disease. The adverse pathological results of low risk disease were upgrading Gleason sum and non-organ-confined disease, 41.6% (47/113) and 28.3% (32/113), respectively. The adverse pathological results of very low risk disease were upgrading Gleason sum and non-organ-confined disease, 15.8% (3/19) and 15.8% (3/19), respectively. CONCLUSION: We conclude that although AS may prevent over treatment and significant adverse effects after surgical intervention, stratification of patients with low risk prostate cancer is of paramount importance when choosing appropriate candidate for AS. The risk of adverse pathological results should be well informed in the pretreatment counseling.


Assuntos
Neoplasias da Próstata/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico/sangue , Prostatectomia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
13.
Sci Rep ; 7: 43930, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266575

RESUMO

Maintaining stemness of leukemic stem cells (LSCs) and reciprocal interactions between leukemia and stromal cells support leukemic progression and resistance to chemotherapy. Targeting the niche-based microenvironment is thus a new approach for leukemia therapy. Cordycepin is an analogue of adenosine and has been suggested to possess anti-leukemia properties. However, whether cordycepin influences association of leukemia and mesenchymal stromal cells has never been investigated. Here we show that cordycepin reduces CD34+CD38- cells in U937 and K562 cells and induces Dkk1 expression via autocrine and paracrine regulation in leukemia and mesenchymal stromal/stem cells (MSCs). Cordycepin suppresses cell attachment of leukemia with MSCs and downregulates N-cadherin in leukemia and VCAM-1 in MSCs. Moreover, incubation with leukemic conditioned media (CM) significantly induces IL-8 and IL-6 expression in MSCs, which is abrogated by cordycepin. Suppression of leukemic CM-induced VCAM-1 and IL-8 by cordycepin in MSCs is mediated by impairing NFκB signaling. Finally, cordycepin combined with an adenosine deaminase inhibitor prolongs survival in a leukemic mouse model. Our results indicate that cordycepin is a potential anti-leukemia therapeutic adjuvant via eliminating LSCs and disrupting leukemia-stromal association.


Assuntos
Antineoplásicos/farmacologia , Desoxiadenosinas/farmacologia , Leucemia/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Animais , Antineoplásicos/administração & dosagem , Adesão Celular/efeitos dos fármacos , Desoxiadenosinas/administração & dosagem , Modelos Animais de Doenças , Humanos , Células K562 , Leucemia/patologia , Camundongos , Análise de Sobrevida , Resultado do Tratamento , Células U937
15.
J Pineal Res ; 60(2): 142-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26514342

RESUMO

Peritoneal dissemination of tumor has high mortality and is associated with the loss of epithelial features, acquisition of motile mesenchymal morphology characteristics, and invasive properties by tumor cells. Melatonin is an endogenously produced molecule in all plant species that is known to exert antitumor activity, but to date, its underlying mechanisms and antiperitoneal metastasis efficacy is not well defined. This study determined the antiperitoneal dissemination potential of melatonin in vivo and assessed its association with the inhibition of epithelial-to-mesenchymal transition (EMT) signaling mechanism by endoplasmic reticulum (ER) stress, which may be a major molecular mechanism of melatonin against cancer. The results demonstrate that melatonin inhibited peritoneal metastasis in vivo and activated ER stress in Cignal ERSE Reporter Assay, organelle structure in transmission electron microscopy images, calpain activity, and protein biomarkers like p-elf2α. Moreover, the overexpression of transcription factor C/EBPß in gastric cancer interacted with NFκB and further regulates COX-2 expression. These were dissociated and downregulated by melatonin, as proven by immunofluorescence imaging, immunoprecipitation, EMSA, and ChIP assay. Melatonin or gene silencing of C/EBPß decreased the EMT protein markers (E-cadherin, Snail, and Slug) and Wnt/beta-catenin activity by Topflash activity, and increased ER stress markers. In an animal study, the results of melatonin therapy were consistent with those of in vitro findings and attenuated systemic proangiogenesis factor production. In conclusion, C/EBPß and NFκB inhibition by melatonin may impede both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Calpaína/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Melatonina/farmacologia , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Calpaína/genética , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Camundongos , NF-kappa B/genética , Proteínas de Neoplasias/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
16.
Oncotarget ; 6(36): 38967-82, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26516929

RESUMO

14-3-3ε is overexpressed in hepatocellular carcinoma (HCC) and its expression significantly associates with a poor prognostic outcome. To uncover how 14-3-3ε contributes to the tumor progression of HCC, we investigated the potential downstream targets regulated by 14-3-3ε. We found that 14-3-3ε increases expression and nuclear translocation of ß-catenin and that 14-3-3ε-induced cell proliferation is attenuated by ß-catenin silencing in HCC cells. Moreover, 14-3-3ε induces aldo-keto reductase family 1 member B10 (AKR1B10) expression through the activation of ß-catenin signaling. Knockdown of AKR1B10 by siRNAs abolished 14-3-3ε-induced in vitro cell proliferation, anchorage-independent growth as well as in vivo tumor growth. Furthermore, AKR1B10 silencing increased retinoic acid (RA) levels in the serum of tumor-bearing mice and RA treatment attenuated 14-3-3ε-induced HCC cell proliferation. We further examined 14-3-3ε and AKR1B10 expression and clinicopathological characteristics of HCC tumors. Although the expression of AKR1B10 was significantly correlated with 14-3-3ε, an increase of AKR1B10 expression in 14-3-3ε positive patients paradoxically had better overall survival and disease-free survival rates as well as lower metastatic incidence than those without an AKR1B10 increase. Finally, we found a loss of AKR1B10 expression in cells exhibiting a high capacity of invasiveness. Silencing of AKR1B10 resulted in inducing snail and vimentin expression in HCC cells. These results indicate that AKR1B10 may play a dual role during HCC tumor progression. Our results also indicate that 14-3-3ε regulates AKR1B10 expression by activating ß-catenin signaling. A combination of 14-3-3ε with AKR1B10 is a potential therapeutic target and novel prognostic biomarker of HCC.


Assuntos
Proteínas 14-3-3/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas 14-3-3/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Prognóstico , Transdução de Sinais
17.
Int J Cardiol ; 201: 441-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26313863

RESUMO

BACKGROUND: Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. METHODS: Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. RESULTS: Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and ß-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. CONCLUSIONS: These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ecocardiografia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/enzimologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transplante de Células-Tronco/métodos , Quinases Associadas a rho/metabolismo
18.
Oncotarget ; 6(29): 27097-112, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26318033

RESUMO

The qRT-PCR analysis of 139 clinical samples and analysis of 150 on-line database clinical samples indicated that AKT3 mRNA expression level was elevated in primary prostate tumors. Immunohistochemical staining of 65 clinical samples revealed that AKT3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of AKT3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer (PCa) cells, while knockdown of AKT3 by siRNA reduced cell proliferation. Overexpression of AKT3 increased the protein expression of total AKT, phospho-AKT S473, phospho-AKT T308, B-Raf, c-Myc, Skp2, cyclin E, GSK3ß, phospho-GSK3ß S9, phospho-mTOR S2448, and phospho-p70S6K T421/S424, but decreased TSC1 (tuberous sclerosis 1) and TSC2 (tuberous Sclerosis Complex 2) proteins in PC-3 PCa cells. Overexpression of AKT3 also increased protein abundance of phospho-AKT S473, phospho-AKT T308, and B-Raf but decreased expression of TSC1 and TSC2 proteins in LNCaP, DU-145, and CA-HPV-10 PCa cells. Oncomine datasets analysis suggested that AKT3 mRNA level was positively correlated to BRAF. Knockdown of AKT3 in DU-145 cells with siRNA increased the sensitivity of DU-145 cells to B-Raf inhibitor treatment. Knockdown of TSC1 or TSC2 promoted the proliferation of PCa cells. Our observations implied that AKT3 may be a potential therapeutic target for PCa treatment.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Factuais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
19.
Cancers (Basel) ; 7(2): 1022-36, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26083935

RESUMO

There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3ß and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA