Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 19(11): e202400238, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578057

RESUMO

Photoswitching materials have emerged as a promising class of compounds that possess manifold interesting properties rendering their widespread use from photoswitches, regulators to optoelectronic devices, security technologies and biochemical assays. Diarylethenes (DAE) constitute one such category of photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs in different areas of chemical and biological sciences, like biomarkers, controlled generation of singlet oxygen, photo-dynamic therapy, chemosensing, catalysis, etc. In all the cases, the photoswitchability of DAE is the principal regulating factor along with its emission properties according to the appended groups. Previous reviews on applications of DAE-based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or in the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in bioimaging of cells, regulating singlet oxygen generation for photodynamic therapy and catalysis of organic reactions, and their future prospects. A tabular presentation of the photophysical properties of DAE derivatives adds to the basic understanding of this subject at a glance. We hope that this cumulative collection of contemporary research on DAE, as presented in this review, will enhance the knowledge of the readers about synthetic design anticipating their properties well in advance, and will certainly motivate researchers to generate new DAE architectures with superior chemical and biological properties in future.


Assuntos
Etilenos , Fotoquimioterapia , Oxigênio Singlete , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Catálise , Humanos , Etilenos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Processos Fotoquímicos , Imagem Óptica
2.
Inorg Chem ; 63(14): 6474-6482, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38536973

RESUMO

Early transition-metal chalcogenides have garnered recent attention for their optoelectronic properties for solar energy conversion. Herein, the first Zr-/Hf-chalcogenides with a main group cation, Ba9Hf3Sn2Se19 (1) and Ba8Zr2SnSe13(Se2) (2), have been synthesized. The structure of 1 is formed from isolated SnSe44- tetrahedra and distorted HfSe6 octahedra. The latter condense via face-sharing trimeric motifs that are further vertex-bridged into chains of 1∞[Hf(1)2Hf(2)Se11]10-. The structure of 2 is comprised of SnSe44- tetrahedra, Se22- dimers, and face-sharing dimers of distorted ZrSe6 octahedra. These represent the first reported examples of Hf-/Zr-chalcogenides exhibiting face-sharing octahedra with relatively short Hf-Hf and Zr-Zr distances. Their preparation in high purity is inhibited by their low thermodynamic stability, with calculations showing small calculated ΔUdec values of +7 and +9 meV atom-1 for 1 and 2, respectively. Diffuse reflectance measurements confirm the semiconducting nature of 1 with an indirect band gap of ∼1.4(1) eV. Electronic structure calculations show that the band gap absorptions arise from transitions between predominantly Se-4p valence bands and mixed Hf-5d/Sn-5p or Zr-4d/Sn-5p conduction bands. Optical absorption coefficients were calculated to be more than ∼105 cm-1 at greater than 1.8 eV. Thus, promising optical properties are demonstrated for solar energy conversion within these synthetically challenging chemical systems.

3.
Dalton Trans ; 52(42): 15426-15439, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376920

RESUMO

Heavier pnictogen (Sb, Bi) containing chalcogenides are well known for their complex structures and semiconducting properties for numerous applications, particularly thermoelectric materials. Here, we report the syntheses of single crystals and polycrystalline phases of a new complex quaternary polytelluride, Ba14Si4Sb8Te32(Te3), via a high-temperature reaction of elements. A single-crystal X-ray diffraction study showed that it crystallizes in an unprecedented structure type with monoclinic symmetry (space group: P21/c). The crystal structure of Ba14Si4Sb8Te32(Te3) consists of one-dimensional ∞1[Si4Sb8Te32(Te3)]28- stripes, which are separated by the Ba2+ cations. Its complex structure features linear polytelluride units of Te34- having intermediate Te⋯Te interactions. A polycrystalline Ba14Si4Sb8Te32(Te3) sample shows a direct narrow bandgap of 0.8(2) eV, which indicates its semiconducting nature. The electrical resistivity of a sintered pellet of the polycrystalline sample exponentially decreases from ∼39.3 Ωcm to ∼0.57 Ωcm on heating it from 323 K to 773 K, confirming the sample's semiconducting nature. The sign of Seebeck coefficient values is positive in the 323 K to 773 K range confirming the p-type nature of the sintered sample. Interestingly, the sample attains an extremely low thermal conductivity of ∼0.32 Wm-1K-1 at 773 K, which could be attributed to the lattice anharmonicity caused by the lone pair effect of Sb3+ species in its complex pseudo-one-dimensional crystal structure. The electronic band structure of the title phase and the strength of chemical bonding of pertinent atomic pairs have been evaluated theoretically using the DFT method.

4.
Dalton Trans ; 52(3): 621-634, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36426633

RESUMO

The single crystals of a quaternary sulfide, Ba4FeAgS6, have been synthesized by reacting elements at 873 K inside a sealed fused silica tube. The title phase is the first ordered quaternary compound of the Ba-Ag-Fe-S system. The crystal structure of Ba4FeAgS6 is characterized by a single-crystal X-ray diffraction study at 298(2) K. It crystallizes in the space group C52h - P21/n of the monoclinic crystal system with unit cell dimensions of a = 8.6367(5) Å, b = 12.0291(7) Å, c = 13.2510(7) Å, and ß = 109.015(2)°. This compound is stoichiometric, and its structure contains twelve unique crystallographic sites: four Ba, one Fe, one Ag, and six S sites. All atoms of the structure occupy the general positions. The Ba4FeAgS6 structure consists of one-dimensional chains of 1∞[FeAgS6]8- that are extended in the [100] direction. The negative charges on these chains are counterbalanced by the filling of Ba2+ cations in between the 1∞[FeAgS6]8- chains. The Fe atoms are bonded to four S atoms that form a distorted tetrahedral geometry around the central Fe atom. Each Ag atom in this structure is coordinated with four S atoms in a distorted tetrahedral fashion. These FeS4 and AgS4 motifs are the main building blocks of the Ba4FeAgS6 structure. The corner-sharing of FeS4 and AgS4 tetrahedra creates one-dimensional chains of 1∞[FeAgS6]8-. This structure does not contain any homoatomic or metallic bonds and can be charge-balanced as (Ba2+)4(Fe3+)1(Ag1+)1(S2-)6. The optical absorption study performed on a polycrystalline Ba4FeAgS6 sample reveals a direct bandgap of 1.2(1) eV. The magnetic studies reveal the antiferromagnetic behavior of Ba4FeAgS6 below 50 K. The thermal conductivity and theoretical electronic structure of Ba4FeAgS6 are also studied in detail.

5.
Dalton Trans ; 51(24): 9265-9277, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670190

RESUMO

We report the synthesis of single-crystals of a new transition metal-containing quaternary chalcogenide, Ba4Mn2Si2Te9, synthesized by the solid-state method at 1273 K. A single-crystal X-ray diffraction study shows that it crystallizes in the orthorhombic crystal system (space group: Pbam) with cell constants of a = 13.4690(6) Å, b = 8.7223(4) Å, and c = 10.0032(4) Å. The asymmetric unit of the structure consists of eight unique crystallographic sites: one Ba, two Mn, one Si, and four Te sites. In this structure, the two Mn sites, Mn(1) and Mn(2), are disordered, each with fractional occupancy of 50%. The short distance of 2.170(3) Å between Mn(1) and Mn(2) implies that both Mn sites are not occupied simultaneously. The Mn atoms show two types of polyhedra: unique Mn(1)Te5 units along with traditional Mn(2)Te4 tetrahedra. The main motifs of the Ba4Mn2Si2Te9 structure are dimeric Si2Te6 units (with Si-Si single bond), Mn(1)Te5, and Mn(2)Te4 polyhedra. The structure can be described as pseudo-two-dimensional if only Mn(1) atoms are present and one-dimensional when only Mn(2) atoms are filled in the structure. The extended 2∞[Mn(1)Si2Te9]10- layers and 1∞[Mn(2)Si2Te8]8- chains are separated by Ba2+ cations. The direct bandgap for the polycrystalline Ba4Mn2Si2Te9 sample is 0.6(1) eV, as determined from an optical absorption study consistent with the sample's black color. The resistivity study of the polycrystalline Ba4Mn2Si2Te9 also confirms the semiconducting behavior. The thermal conductivity (κ) values are extremely low and decrease with increasing temperature up to 0.46 W m-1 K-1 at 773 K. The DFT studies suggest that the computed bandgap depends on the magnetic ordering of Mn magnetic moments, and the value varies from ∼0.3-1.0 eV. Relative inter-atomic bond strengths of pertinent atom pairs have been analyzed using the crystal orbital Hamilton populations (COHP).

6.
Inorg Chem ; 61(2): 968-981, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34961320

RESUMO

A new quaternary telluride, Ba4Ge2Sb2Te10, was synthesized at high temperature via the reaction of elements. A single-crystal X-ray diffraction study shows that the title compound crystallizes in its own structure type in the monoclinic P21/c space group having cell dimensions of a = 13.984(3) Å, b = 13.472(3) Å, c = 13.569(3) Å, and ß = 90.16(3)° with four formula units per unit cell (Z = 4). The pseudo-one-dimensional crystal structure of Ba4Ge2Sb2Te10 consists of infinite 1∞[Ge2Sb2Te10]8- stripes, which are separated by Ba2+ cations. Each of the Ge(1) atoms is covalently bonded to four Te atoms, whereas the Ge(2) atom is covalently bonded with one Sb(2) and three Te atoms in a distorted tetrahedral geometry. The title compound is the first example of a chalcogenide that shows Ge-Sb bonding. The Sb(1) atom is present at the center of the seesaw geometry of four Te atoms. In contrast, the Sb(2) atom forms a seesaw geometry by coordinating with one Ge(2) and three Te atoms. Condensation of these Ge and Sb centered polyhedral units lead to the formation of 1∞[Ge2Sb2Te10]8- stripes. The temperature-dependent resistivity study suggests the semimetallic/degenerate semiconducting nature of polycrystalline Ba4Ge2Sb2Te10. The positive sign of Seebeck coefficient values indicates that the predominant charge carriers are holes in Ba4Ge2Sb2Te10. An extremely low lattice thermal conductivity of ∼0.34 W/mK at 773 K was observed for polycrystalline Ba4Ge2Sb2Te10, which is presumably due to the lattice anharmonicity induced by the stereochemically active 5s2 lone pair of Sb. The electronic structure of Ba4Ge2Sb2Te10 and the bonding of atom pairs in the structure have been analyzed by means of ELF analysis and crystal orbital Hamilton population (COHP) analysis.

7.
Dalton Trans ; 50(19): 6688-6701, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908515

RESUMO

Three new isostructural quaternary tellurides, Ba2Ln1-xMn2Te5 (Ln = Pr, Gd, and Yb), have been synthesized by the molten-flux method at 1273 K. The single-crystal X-ray diffraction studies at 298(2) K showed that Ba2Ln1-xMn2Te5 crystallize in the space group -C2/m of the monoclinic crystal system. There are six unique crystallographic sites in this structure's asymmetric unit: one Ba site, one Ln site, one Mn site, and three Te sites. The Ln site in the Ba2Ln1-xMn2Te5 structure is partially filled, which leaves about one-third of the Ln sites vacant (□) for Pr and Gd compounds. These structures do not contain any homoatomic or metallic bonding and can be charge-balanced as (Ba2+)2(Gd/Pr3+)2/3(Mn2+)2(Te2-)5. The refined composition for the Yb compound is Ba2Yb0.74(1)Mn2Te5 and can be charge-balanced with a mixed valence state of Yb2+/Yb3+. The crystal structures of Ba2Ln1-xMn2Te5 consist of complex layers of [Ln1-xMn2Te5]4- stacked along the [100] direction, with Ba2+ cations separating these layers. The Ln atoms are bound to six Te atoms that form a distorted octahedral geometry around the central Ln atom. Each Mn atom in this structure is coordinated to four Te atoms in a distorted tetrahedral fashion. These LnTe6 and MnTe4 units are the main building blocks of the Ba2Ln1-xMn2Te5 structure. The optical absorption study performed on a polycrystalline Ba2Gd2/3Mn2Te5 sample reveals a direct bandgap of 1.06(2) eV consistent with the DFT study. A semiconducting behavior was also observed for polycrystalline Ba2Gd2/3Mn2Te5 from the resistivity study. The temperature-dependent magnetic studies on a polycrystalline sample of Ba2Gd2/3Mn2Te5 did not reveal any long-range magnetic order down to 5 K. The effective magnetic moment (µeff) of 10.37µB calculated using the Curie-Weiss law is in good agreement with the theoretical value (µcal) of 10.58µB.

8.
Inorg Chem ; 59(17): 12276-12285, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845626

RESUMO

Standard solid-state methods produced black crystals of the compounds BaCu0.43(3)Te2 and BaAg0.77(1)Te2 at 1173 K; the crystal structures of each were established using single-crystal X-ray diffraction data. Both crystal structures are modulated. The compound BaCu0.43(3)Te2 crystallizes in the monoclinic superspace group P2(αß1/2)0, having cell dimensions of a = 4.6406(5) Å, b = 4.6596(5) Å, c = 10.362(1) Å, ß = 90.000(9)°, and Z = 2 and an incommensurate vector of q = 0.3499(6)b* + 0.5c*. The compound BaAg0.77(1)Te2 crystallizes in the orthorhombic P21212(α00)000 superspace group with cell dimensions of a = 4.6734(1) Å, b = 4.6468(1) Å, c = 11.1376(3) Å, and Z = 2 and an incommensurate vector of q = 0.364(2)a*. The asymmetric unit of the BaCu0.43(3)Te2 structure comprises eight crystallographically independent sites; that for BaAg0.77(1)Te2 comprises four. In these two structures, each of the M (M = Cu, Ag) atoms is connected to four Te atoms to make two-dimensional layers of [MxTe4/4]n- that are separated by layers of Ba atoms and square nets of Te. A Raman spectroscopic study at 298(2) K on a pelletized polycrystalline sample of BaAg0.8Te2 shows the presence of Ag-Te (83, 116, and 139 cm-1) and Ba-Te vibrations (667 and 732 cm-1). A UV-vis-NIR spectroscopic study on a powdered sample of BaAg0.8Te2 shows the semiconducting nature of the compound with a direct band gap of 1.0(2) eV, consistent with its black color. DFT calculations give a pseudo bandgap with a weak value of the DOS at the Fermi level.

9.
Inorg Chem ; 59(4): 2434-2442, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31999109

RESUMO

A new ternary telluride, Ba3ScTe5, with a pseudo-one-dimensional structure, was synthesized at 1173 K by standard solid-state methods. A single-crystal X-ray diffraction study at 100(2) K shows the structure to be modulated. The structure of the subcell of Ba3ScTe5 crystallizes with two formula units in the hexagonal space group D6h3-P63/mcm with unit cell dimensions of a = b = 10.1190(5) Å and c = 6.8336(3) Å. The asymmetric unit of the subcell structure consists of four crystallographically independent sites: Ba1 (site symmetry: m2m), Sc1 (-3.m), Te1 (m2m), and Te2 (3.2). Its structure is made up of chains of ∞1[ScTe33-] that are separated by Ba2+ cations. The Sc atoms are bonded to six Te1 atoms that form a slightly distorted octahedral geometry. The structure of the subcell also contains linear infinite chains of Te2 with intermediate Te···Te interactions. The superstructure of Ba3ScTe5 is incommensurate and was solved in the hexagonal superspace group P-6(00γ)0 with a = 10.1188(3) Å and c = 6.8332(3) Å and a modulation vector of q = 0.3718(2)c*. The arrangement and coordination geometries of the atoms in the superstructure are very similar to those in the substructure. However, the main difference is that the infinite chains of Te atoms in the superstructure are distorted owing to the formation of long- and short-bonded pairs of Te atoms. The presence of these chains with intermediate Te···Te interactions makes assignment of the formal oxidation states arbitrary. The optical absorption study of a polycrystalline sample of Ba3ScTe5 that was synthesized by the stoichiometric reaction of elements at 1173 K reveals a direct band gap of 1.1(2) eV. The temperature-dependent resistivity study of polycrystalline Ba3ScTe5 shows semiconducting behavior corroborating the optical studies, while density functional theory calculations report a pseudo band gap of 1.3 eV.

10.
Inorg Chem ; 58(12): 7837-7844, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31185552

RESUMO

Single crystals and a polycrystalline sample of Ba2Ag2Se2(Se2) were synthesized by standard solid-state chemistry methods at 1173 and 973 K, respectively. The crystal structure of this ternary compound was established by single-crystal X-ray diffraction studies at 100(2) K. The superstructure of this compound is commensurate and crystallizes in the space group P21/ c of a monoclinic system with cell constants of a = 6.1766(2) Å, b = 6.1788(2) Å, c = 21.5784(8) Å, and ß = 90.02(1)° ( Z = 4). The asymmetric unit of the superstructure comprises eight atoms occupying general positions: two Ba atoms, two Ag atoms, and four Se atoms. In this structure, each Ag atom is tetrahedrally coordinated with four adjacent Se atoms to form distorted AgSe4 units that share edges with the neighboring tetrahedra to form a two-dimensional [AgSe4/4]- layer. These layers are separated by Ba2+ and Se22- units. The presence of the Se22- unit is also supported by an intense band at around 247 cm-1 in the Raman spectrum of Ba2Ag2Se2(Se2). A density functional theory study shows that the compound is a semiconductor with a calculated band gap of 1.1 eV. As determined by UV-visible spectroscopy, the direct and indirect band gaps are 1.23(2) and 1.10(2) eV, respectively, in good agreement with the theory and consistent with the black color of the compound. A temperature-dependent resistivity study also confirms the semiconducting nature of Ba2Ag2Se2(Se2).

11.
J Assoc Physicians India ; 59: 453-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22315754

RESUMO

Multiple brain abscesses due to Listeria monocytogenes was detected in a 55 year old immunocompetent person who had history of progressive weakness for last three months with difficulty in micturition and abnormal behavior for the same duration. The patient was diagnosed six months back as tubercular meningitis and was put on ATD (now in continuation phase). After being diagnosed with Listeria, the patient was put on antibiotic therapy and responded dramatically. The abscess, by virtue of being relatively large and superficially located, was drained surgically.


Assuntos
Abscesso Encefálico/diagnóstico , Listeria monocytogenes/isolamento & purificação , Listeriose/diagnóstico , Antibacterianos/uso terapêutico , Abscesso Encefálico/tratamento farmacológico , Drenagem , Quimioterapia Combinada , Humanos , Imunocompetência , Listeria monocytogenes/efeitos dos fármacos , Listeriose/complicações , Listeriose/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA