Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
MethodsX ; 13: 102898, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39239463

RESUMO

It is needless to say that travel to and settlement on Mars are associated with extreme levels of scientific and engineering issues. This will only be amplified with the long-term duration of the mission, not only due to scarcity of resources, but also as the psychological aspects of the dynamics among the crew increase drastically. It should be emphasized that this is a scientific crew, who have undergone high levels of confinement during space travel to Mars, O (102 Earth days), are living in semi-solitude and partial confinement conditions for durations of O (103 Earth days), and even at the nominal termination of the mission, foresee a high-risk and arduous travel time of O (102 Earth days) back to the Earth. The mental weight of the described mission with its slow pace and tardy episodes, puts the crew under severe psychological issues. Minimal and conservative design of spaces, lack of constant access to the exterior, and social solitude are among major factors contributing to the psychological well-being of the crew. Furthermore, the overall lower levels of natural light, accompanied by the minimum possible area of transparent facades, protecting the crew from harmful radiations and cold exterior, burden the mental conditions of the crew even more. Given the limited availability of data from the surface of Mars, study of the effects linked to the lighting and illumination design of the habitats is challenging. The current manuscript hopes to shed light on the illumination and lighting design and simulation procedure, required data, assumptions, and final results for the surface-level habitats on Mars.•Mars / Sub orbital configuration allows for limited natural lighting, however, upon site-specific analysis, it might be considerable as a base passive source.•Current simulation tools are design based on Earth-bound design requirements. These need to be re-oriented to match available planetary data.

2.
MethodsX ; 11: 102270, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37457432

RESUMO

Centered on the core idea of long duration habitat design for research crew on Mars, the Martian Habitat Units (MHUs) are designed as a cluster of 10 units each with the maximum capacity of 9 crew members to live and carry on with the local challenges of scientific and exploratory life, while enjoying their lives as intellectual, social individuals in the harsh environment of Mars for durations in the order of magnitude of several years. This approach to the concept of a living environment in sharp contradiction to that of a shelter with the minimal capabilities to meet the requirements of terrestrial life to the point of survival, has led the outcoming design to be a fulfilling environment for the inhabitants of the units to evolve and thrive culturally, while being on a years-long mission. This manuscript provides detailed insight on the lessons learned of the aforementioned comprehensive design attempt with, but not limited to, the following core concerns: •The initial stand-point of such a design procedure relies on an ever increasing and comprehensive list of concerns, be it classically discussed in the literature and predictable, or unforeseen on the face of it, but to be prevented anyhow. The manuscript discusses the most crucial ones of such criteria/concerns.•The infamous saying of "Whatever that can go wrong, will go wrong" demands a rather complex level of redundancies in all layers of the design and the thought procedure behind its all aspects. The manuscript addresses the adequate steps towards its realization.•Modularity in all layers of the design plays a key role in reducing construction, maintenance, and installation costs, as for any deep space mission the mentioned expenses are astronomically high themselves. The manuscript presents our solution for geometric modularity of the design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA