Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7710): 420-424, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925968

RESUMO

Gas permeation through nanoscale pores is ubiquitous in nature and has an important role in many technologies1,2. Because the pore size is typically smaller than the mean free path of gas molecules, the flow of the gas molecules is conventionally described by Knudsen theory, which assumes diffuse reflection (random-angle scattering) at confining walls3-7. This assumption holds surprisingly well in experiments, with only a few cases of partially specular (mirror-like) reflection known5,8-11. Here we report gas transport through ångström-scale channels with atomically flat walls12,13 and show that surface scattering can be either diffuse or specular, depending on the fine details of the atomic landscape of the surface, and that quantum effects contribute to the specularity at room temperature. The channels, made from graphene or boron nitride, allow helium gas flow that is orders of magnitude faster than expected from theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels, but with molybdenum disulfide walls, exhibit much slower permeation that remains well described by Knudsen diffusion. We attribute the difference to the larger atomic corrugations at molybdenum disulfide surfaces, which are similar in height to the size of the atoms being transported and their de Broglie wavelength. The importance of this matter-wave contribution is corroborated by the observation of a reversed isotope effect, whereby the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into the atomistic details of molecular permeation, which previously could be accessed only in simulations10,14, and demonstrate the possibility of studying gas transport under controlled confinement comparable in size to the quantum-mechanical size of atoms.

2.
Science ; 360(6395): 1339-1342, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930134

RESUMO

The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

3.
Nature ; 538(7624): 222-225, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27602512

RESUMO

Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA