Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Front Immunol ; 13: 832306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091026

RESUMO

Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1ß) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1ß) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1ß is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1ß processing in these cells. We found that although caspase-1 is required for IL-1ß secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1ß processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1ß secretion.


Assuntos
Autofagia , Caspase 1 , Interleucina-1beta , Neutrófilos , Serina Proteases , Autofagia/genética , Autofagia/imunologia , Caspase 1/genética , Caspase 1/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Serina Proteases/genética , Serina Proteases/imunologia
3.
J Neurooncol ; 153(3): 403-415, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34125375

RESUMO

PURPOSE: γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS: Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS: HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION: GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.


Assuntos
Glioblastoma , Meios de Cultivo Condicionados , Difosfatos , Humanos , Ativação Linfocitária , Perforina , Receptores de Antígenos de Linfócitos T gama-delta , Células Th1 , Microambiente Tumoral , Fator de Necrose Tumoral alfa
4.
Front Immunol ; 9: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515581

RESUMO

Interleukin-1ß (IL-1ß), a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1ß in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1ß by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1ß secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1ß secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1ß secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1ß secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1ß was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1ß-LC3B in a vesicular compartment peaked before IL-1ß increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1ß and LC3B and then promoted neutrophil IL-1ß secretion. In addition, specific ELISAs indicated that although both IL-1ß and pro-IL-1ß are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1ß secretion. Furthermore, the serine proteases inhibitor AEBSF reduced IL-1ß secretion. Moreover, IL-1ß could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1ß intersect azurophil granules content and that serine proteases also regulate IL-1ß secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1ß secretion in human neutrophils.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/imunologia , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular , Humanos , Lipopolissacarídeos/imunologia , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Via Secretória , Serina Proteases/metabolismo , Wortmanina/farmacologia
5.
Eur J Immunol ; 44(3): 819-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24271816

RESUMO

γδ T cells have been shown to stimulate the recruitment and activation of neutrophils through the release of a range of cytokines and chemokines. Here, we investigated the reverse relationship, showing that human neutrophils suppress the function of human blood γδ T cells. We show that the upregulation of CD25 and CD69 expression, the production of IFN-γ, and the proliferation of γδ T cells induced by (E)-1-hydroxy-2-methylbut-2-enyl 4-diphosphate are inhibited by neutrophils. Spontaneous activation of γδ T cells in culture is also suppressed by neutrophils. We show that inhibitors of prostaglandin E2 and arginase I do not exert any effect, although, in contrast, catalase prevents the suppression of γδ T cells induced by neutrophils, suggesting the participation of neutrophil-derived ROS. We also show that the ROS-generating system xanthine/xanthine oxidase suppresses γδ T cells in a similar fashion to neutrophils, while neutrophils from chronic granulomatous disease patients only weakly inhibit γδ T cells. Our results reveal a bi-directional cross-talk between γδ T cells and neutrophils: while γδ T cells promote the recruitment and the activation of neutrophils to fight invading pathogens, neutrophils in turn suppress the activation of γδ T cells to contribute to the resolution of inflammation.


Assuntos
Neutrófilos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Cultivadas , Humanos , Ativação Linfocitária/imunologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Leukoc Biol ; 72(1): 93-100, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12101267

RESUMO

The aim of the present study was to analyze the early events elicited by tumor necrosis factor alpha (TNF-alpha) on monocyte-derived dendritic cells (moDC) adhesion to fibronectin (FN) and the involvement of cAMP in the signal transduction mechanism. The intracellular concentration of cAMP and moDC adhesion to FN decreased after TNF-alpha treatment. An inverted dose-dependency for TNF-alpha effect was observed for adhesion and cAMP levels. The presence of a phosphodiesterase (PDE) inhibitor (IBMX) and cAMP analogs (8Br-cAMP, Db-cAMP) reversed the observed TNF-alpha effects. The role of cAMP was analyzed further by examining the cAMP levels in nonadhered and adhered, TNF-alpha-treated moDC. Nonadhered moDC showed lower cAMP levels compared with adhered moDC. Furthermore, nonadhered moDC showed higher IL-12 content and allostimulatory ability compared with adhered moDC. The higher allostimulatory capacity was abolished in the presence of cAMP analogs and a PDE inhibitor. These results suggest that cAMP levels correlate with TNF-alpha-induced changes of moDC adhesion and allostimulatory capacity.


Assuntos
Adesão Celular , AMP Cíclico/metabolismo , Células Dendríticas/imunologia , Fibronectinas/metabolismo , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Humanos , Interleucina-12/biossíntese , Ativação Linfocitária , Monócitos/imunologia , Células-Tronco/imunologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA