Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 650(Pt 1): 1499-1520, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308836

RESUMO

Climate impacts and adaptation studies often use output from impact models that require data representing future climates at a resolution greater than can be provided by Global Climate Models (GCMs). This paper describes the use of Regional Climate Model (RCM) simulations to generate high-resolution future climate information for assessing climate impacts in the Ganges-Brahmaputra-Meghna (GBM) and Mahanadi deltas as part of the DECCMA project. In this study, three different GCMs (HadGEM2-ES, CNRM-CM5 and GFDL-CM3), all using a single scenario for future greenhouse forcing of the atmosphere (RCP 8.5), were downscaled to a horizontal resolution of 25 km over south Asia using the HadRM3P RCM. These three GCMs were selected based on ability to represent key climate processes over south Asia and ability to sample a range of regional climate change responses to greenhouse gas forcing. RCM simulations of temperature, precipitation, and lower level (850 hPa) atmospheric circulation in the monsoon season (June, July, August, September - JJAS) were compared with observational datasets and their respective driving GCMs to ensure large-scale consistency. Although there are some biases in the RCM simulations, these comparisons indicate that the RCMs are able to simulate realistically aspects of the observed climate of South Asia, such as the monsoon circulation and associated precipitation that are key for informing downstream impacts and adaptation studies. Simulated future temperature and precipitation changes on seasonal and daily timescales suggest increases in both temperature and precipitation across all three models during the monsoon season, with an increase in the amount of extremely heavy precipitation over the GBM and Mahanadi basins. Despite different driving conditions, these results are consistent across all three RCM simulations, providing a level of confidence in the magnitudes and spatial characteristics of temperature and precipitation projections for South Asia.

3.
Sci Total Environ ; 636: 1362-1372, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913597

RESUMO

The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition.

4.
Sci Total Environ ; 637-638: 1069-1080, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801202

RESUMO

As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA