Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dent Mater ; 31(8): 1003-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26076830

RESUMO

OBJECTIVE: In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. METHODS: Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. RESULTS: In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. SIGNIFICANCE: The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications.


Assuntos
Resinas Compostas/química , Análise do Estresse Dentário , Materiais Dentários/química , Módulo de Elasticidade , Teste de Materiais , Modelos Químicos , Transição de Fase , Reologia , Resistência ao Cisalhamento , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA