RESUMO
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumin-induced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
RESUMO
This present study investigated the anti-skin-aging properties of Rosa rugosa. Initially, phenolic compounds were isolated from a hot water extract of Rosa rugosa's flower buds. Through repeated chromatography (column chromatography, MPLC, and prep HPLC), we identified nine phenolic compounds (1-9), including a previously undescribed depside, rosarugoside D (1). The chemical structure of 1 was elucidated via NMR, HR-MS, UV, and hydrolysis. Next, in order to identify bioactive compounds that are effective against TNF-α-induced NHDF cells, we measured intracellular ROS production in samples treated with each of the isolated compounds (1-9). All isolates reduced the level of ROS at a concentration of 10 µM. Particularly, two depsides-rosarugosides A and D (2 and 1)-significantly inhibited ROS expression in TNF-α-induced NHDFs compared to the other phenolic compounds. Subsequently, the production of MMP-1 and procollagen type Ι α1 by these two depsides was examined. Remarkably, rosarugoside A (2) significantly decreased MMP-1 secretion at all concentrations. In contrast, rosarugoside D (1) regulated the expression of procollagen type Ι α1. These findings collectively suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), hold significant potential for protecting against aging and skin damage. Overall, these findings suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), have the potential to prevent and protect against aging and skin damage, although more specific quantitative analysis is needed.
RESUMO
Epstein-Barr virus (EBV), the first virus found to induce cancer in humans, has been frequently detected in various types of B cell lymphomas. During its latent phase, EBV expresses a limited set of proteins crucial for its persistence. Induction of the lytic phase of EBV has shown promise in the treatment of EBV-associated malignancies. The present study assessed the ability of phomaherbarine A, a novel compound derived from the endophytic fungus Phoma herbarum DBE-M1, to stimulate lytic replication of EBV in B95-8 cells. Phomaherbarine A was found to efficiently initiate the expression of both early and late EBV lytic genes in B95-8 cells, with this initiation being further heightened by the addition of phorbol myristate acetate and sodium butyrate. Moreover, phomaherbarine A demonstrated notable cytotoxicity against the EBV-associated B cell lymphoma cell lines B95-8 and Raji. Mechanistically, phomaherbarine A induces apoptosis in these cells through the activation of caspase-3/7. When combined with ganciclovir, phomaherbarine A does not interfere with the reduction of viral replication by ganciclovir and sustains its apoptosis induction. In conclusion, these findings indicate that phomaherbarine A may be a promising candidate for therapeutic intervention in patients with EBV-associated B cell lymphomas.
Assuntos
Apoptose , Linfócitos B , Herpesvirus Humano 4 , Ativação Viral , Humanos , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Ativação Viral/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação Viral/efeitos dos fármacos , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Antivirais/farmacologia , Ascomicetos/efeitos dos fármacos , Linfoma de Células B/virologia , Linfoma de Células B/tratamento farmacológico , Latência Viral/efeitos dos fármacosRESUMO
Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.
Assuntos
Antidepressivos , Depressão , Sistema Hipotálamo-Hipofisário , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Sistema Hipófise-Suprarrenal , Animais , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Células PC12 , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Masculino , Ratos , Camundongos , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Corticosterona/sangue , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , FloresRESUMO
Background: Alzheimer's disease (AD) has memory impairment associated with aggregation of amyloid plaques and neurofibrillary tangles in the brain. Although anti-amyloid ß (Aß) protein antibody and chemical drugs can be prescribed in the clinic, they show adverse effects or low effectiveness. Therefore, the development of a new drug is necessarily needed. We focused on the cognitive function of Panax ginseng and tried to find active ingredient(s). We isolated panaxcerol D, a kind of glycosyl glyceride, from the non-saponin fraction of P. ginseng extract. Methods: We explored effects of acute or sub-chronic administration of panaxcerol D on cognitive function in scopolamine- or Aß25-35 peptide-treated mice measured by several behavioral tests. After behavioral tests, we tried to unveil the underlying mechanism of panaxcerol D on its cognitive function by Western blotting. Results: We found that pananxcerol D reversed short-term, long-term and object recognition memory impairments. The decreased extracellular signal-regulated kinases (ERK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) in scopolamine-treated mice was normalized by acute administration of panaxcerol D. Glial fibrillary acidic protein (GFAP), caspase 3, NF-kB p65, synaptophysin and brain-derived neurotrophic factor (BDNF) expression levels in Aß25-35 peptide-treated mice were modulated by sub-chronic administration of panaxcerol D. Conclusion: Pananxcerol D could improve memory impairments caused by cholinergic blockade or Aß accumulation through increased phosphorylation level of ERK or its anti-inflammatory effect. Thus, panaxcerol D as one of non-saponin compounds could be used as an active ingredient of P. ginseng for improving cognitive function.
RESUMO
Triterpenoidal saponins have been reported to be able to restrain SARS-CoV-2 infection. To isolate antiviral compounds against SARS-CoV-2 from the leaves of Aster koraiensis, we conducted multiple steps of column chromatography. We isolated six triperpenoidal saponins from A. koraiensis leaves, including three unreported saponins. Their chemical structures were determined using HR-MS and NMR data analyses. Subsequently, we tested the isolates to assess their ability to impede the entry of the SARS-CoV-2 pseudovirus (pSARS-CoV-2) into ACE2+ H1299 cells and found that five of the six isolates displayed antiviral activity with an IC50 value below 10 µM. Notably, one unreported saponin, astersaponin J (1), blocks pSARS-CoV-2 in ACE2+ and ACE2/TMPRSS2+ cells with similar IC50 values (2.92 and 2.96 µM, respectively), without any significant toxic effect. Furthermore, our cell-to-cell fusion and SARS-CoV-2 Spike-ACE2 binding assays revealed that astersaponin J inhibits membrane fusion, thereby blocking both entry pathways of SARS-CoV-2 while leaving the interaction between the SARS-CoV-2 Spike and ACE2 unaffected. Overall, this study expands the list of antiviral saponins by introducing previously undescribed triterpenoidal saponins isolated from the leaves of A. koraiensis, thereby corroborating the potency of triterpenoid saponins in impeding SARS-CoV-2 infection.
RESUMO
In this study, the chemical investigation of Tetraena aegyptia (Zygophyllaceae) led to the identification of a new megastigmene derivative, tetraenone A ((2S, 5R, 6R, 7E)-2-hydroxy-5,6-dihydro-ß-ionone) (1), along with (3S, 5R, 6S, 7E)-3-hydroxy-5,6-epoxy-5,6-dihydro-ß-ionone- (2), 3,4-dihydroxy-cinnamyl alcohol-4-glucoside (3), 3ß,19α-dihydroxy-ursan-28-oic acid (4), quinovic acid (5), p-coumaric acid (6), and ferulic acid (7), for the first time. The chemical structures of 1-7 were confirmed by analysis of their 1D and 2D NMR and HRESIMS spectra and by their comparison with the relevant literature. The absolute configurations of 1 and 2 were assigned based on NOESY interactions and ECD spectra. Conformational analysis showed that 1 existed exclusively in one of the two theoretically possible chair conformers with a predominant s-trans configuration for the 3-oxobut-1-en-1-yl group with the ring, while the half-chair conformer had a pseudo-axial hydroxy group that was predominant over the other half-chair conformation. Boat conformations were not among the most stable conformations, and the s-trans isomerism was in favor of s-cis configuration. In silico investigation revealed that 1 and 2 had more favorable binding interactions with Mpro rather than with TMPRSS2. Accordingly, molecular dynamic simulations were performed on the complexes of compounds 1 and 2 with Mpro to explore the stability of their interaction with the target protein structure. Compounds 1 and 2 might offer a possible starting point for developing covalent inhibitors of Mpro of SARS-CoV-2.
RESUMO
Diffuse-type gastric cancer (GC) is a type of stomach cancer that occurs in small clusters of cells that are widely spread. It does not typically manifest with symptoms until the advanced stages and often goes undetected in routine imaging tests. In addition, there is no specific targeted therapy for diffuse-type GC and it has a high mortality risk. Hence, it is worthwhile to discover molecules against this cancer. In this study, the extract of Heloniopsis koreana, which is endemic to Korea, exhibited cytotoxicity against two diffuse-type GC cell lines, MKN1 and SNU668. This led to the isolation of 10 compounds, including a new cinnamic acid glycoside. Of the compounds, saponin Th (4) and SNF 11 (5) showed potent activities with IC50 values of 3.66 and 3.85 µM, respectively, in MKN1 cells, and 1.8 and 1.98 µM, respectively, in SNU668 cells. These compounds prevented cancer cell division, invasion, and colony formation in both cell lines. In addition, these compounds induced cancer cell death through conventional cell death pathways, showing an increase in ADP-ribose polymerase, caspase 3, and BAX and a decrease in BCL2.
RESUMO
Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-1 production were explored. Consequently, we verified the skin-protective effects of these flavonol and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure-activity relationship analysis as part of our ongoing research. We investigated the protective effects of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs). Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates. Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit skin damage, including aging.
RESUMO
Aspacochioside C (ACC) is a steroidal saponin isolated from Asparagus cochinchinensis. Steroidal saponins, such as pseudoprotodioscin and dioscin, are known to inhibit melanogenesis, but the role of ACC in melanogenesis remains unknown. Due to the toxic effect of the commonly used skin whitening agents like arbutin, kojic acid and α-lipoic acid alternative plant products are recentlybeen studied for their anti-hypergmentation effect. This study explores the role of ACC in melanogenesis in both in vivo and in vitro models. Here, we for the first time demonstrate that ACC attenuated α-MSH- and UVB-induced eumelanin production by inhibiting tyrosinase-related protein (TRP)-2 protein expression in both murine B16F10 and human melanoma MNT1 cells. However, ACC had no significant effect on pheomelanin concentration. ACC also decreased the pigmentation density in zebrafish embryos, which indicates that ACC targets TRP2 and inhibits eumelanin synthesis. Our results demonstrate that ACC inhibits TRP2, thereby attenuating eumelanin synthesis both in in vitro and in vivo zebrafish model. Therefore, ACC can potentially be used as an anti-melanogenic agent for both aesthetic and pharmaceutical purposes.
Assuntos
Asparagus , Peixe-Zebra , Humanos , Animais , Camundongos , Inibição Psicológica , ArbutinaRESUMO
Neuroinflammation and synaptic damage are important etiologies associated with the progression of Alzheimer's disease (AD). Linderae Radix (LR) has antioxidant and anti-inflammatory properties. This study investigated whether LR attenuates microglia activation-mediated neuroinflammation and synaptic degeneration and improves AD pathological phenotypes induced by amyloid beta oligomers (AßO) or lipopolysaccharide (LPS) toxicity. For in vitro studies, we treated LR to AßO-stimulated HT22 cells or LR LPS-stimulated BV2 cells. For in vivo studies, we administered LR to mice and AßO was injected by stereotaxic to induce cognitive impairment, neuroinflammation, and synaptic loss. We found that LR increased the cell viability reduced by AßO. Moreover, LR inhibited pro-inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), and downregulated p38 mitogen-activated protein kinase (MAPK) signaling in BV2 cells. Behavioral assessments demonstrated that LR administration significantly improved cognitive decline induced by AßO-injection. Furthermore, we found that microglia activation increased, and the expression of synaptic proteins decreased in the hippocampus of the AßO-injected group, which was alleviated in the LR-treated group. These findings suggest that LR may be a potential candidate for protection against neuroinflammation and synaptic loss, and may prevent or delay AD progression.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológicoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY: We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS: OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17ß-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3ß (GSK-3ß), ß-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS: EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3ß, and ß-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION: These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3ß/ß-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.
Assuntos
Artemisia annua , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , beta Catenina/metabolismo , Sinaptofisina , Pós-Menopausa , MAP Quinases Reguladas por Sinal Extracelular/metabolismoRESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anti-cancer drugs. The main symptoms often include sensory disturbances and neuropathic pain, and currently there is no effective treatment for this condition. This study aimed to investigate the suppressive effects of magnolin, an extracellular signal-regulated kinase (ERK) inhibitor substance derived from a 95% EtOH extract of the seeds of Magnolia denudata, on the symptoms of CIPN. A taxol-based anti-cancer drug paclitaxel (PTX) was repeatedly injected (2 mg/kg/day, total 8 mg/kg) into mice to induce CIPN. A neuropathic pain symptom was assessed using a cold allodynia test that scores behaviors of licking and shaking paw after plantar administration of acetone drop. Magnolin was administered intraperitoneally (0.1, 1, or 10 mg/kg) and behavioral changes to acetone drop were measured. The effect of magnolin administration on ERK expression in the dorsal root ganglion (DRG) was investigated using western blot analysis. The results showed that the repeated injections of PTX induced cold allodynia in mice. Magnolin administration exerted an analgesic effect on the PTX-induced cold allodynia and inhibited the ERK phosphorylation in the DRG. These results suggest that magnolin could be developed as an alternative treatment to suppress paclitaxel-induced neuropathic pain symptoms.
RESUMO
In total, four new eudesmane-type sesquiterpene glycosides, askoseosides A-D (1-4), and 18 known compounds (5-22) were isolated from the flowers of Aster koraiensis via chromatographic techniques. Chemical structures of the isolated compounds were identified by spectroscopic/spectrometric methods, including NMR and HRESIMS, and the absolute configuration of the new compounds (1 and 2) was performed by electronic circular dichroism (ECD) studies. Further, the anticancer activities of the isolated compounds (1-22) were evaluated using the epidermal growth factor (EGF)-induced as well as the 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell transformation assay. Among the 22 compounds, compounds 4, 9, 11, 13-15, 17, 18, and 22 significantly inhibited both EGF- and TPA-induced colony growth. In particular, askoseoside D (4, EGF: 57.8%; TPA: 67.1%), apigenin (9, EGF: 88.6%; TPA: 80.2%), apigenin-7-O-ß-d-glucuronopyranoside (14, EGF: 79.2%; TPA: 70.7%), and 1-(3',4'-dihydroxycinnamoyl) cyclopentane-2,3-diol (22, EGF: 60.0%; TPA: 72.1%) showed higher potent activities.
RESUMO
Huntington's disease (HD) is a neurodegenerative disease that affects the motor control system of the brain. Its pathological mechanism and therapeutic strategies have not been fully elucidated yet. The neuroprotective value of micrandilactone C (MC), a new schiartane nortriterpenoid isolated from the roots of Schisandra chinensis, is not well-known either. Here, the neuroprotective effects of MC were demonstrated in 3-nitropropionic acid (3-NPA)-treated animal and cell culture models of HD. MC mitigated neurological scores and lethality following 3-NPA treatment, which is associated with decreases in the formation of a lesion area, neuronal death/apoptosis, microglial migration/activation, and mRNA or protein expression of inflammatory mediators in the striatum. MC also inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in the striatum and microglia after 3-NPA treatment. As expected, decreases in inflammation and STAT3-activation were reproduced in a conditioned medium of lipopolysaccharide-stimulated BV2 cells pretreated with MC. The conditioned medium blocked the reduction in NeuN expression and the enhancement of mutant huntingtin expression in STHdhQ111/Q111 cells. Taken together, MC might alleviate behavioral dysfunction, striatal degeneration, and immune response by inhibiting microglial STAT3 signaling in animal and cell culture models for HD. Thus, MC may be a potential therapeutic strategy for HD.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Schisandra , Animais , Microglia/metabolismo , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Transcrição STAT3/metabolismo , Meios de Cultivo Condicionados/farmacologiaRESUMO
Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.
RESUMO
Alpinia galanga have been widely used as spice or traditional medicine in East Asia, commonly known as Thai ginger. In the present study, seven major phenylpropanoids, (±)-1'-hydoxychavicol acetate (1; HCA), (1'S)-1'-acetoxychavicol acetate (2; ACA), (1'S)-1'-acetoxyeugenol acetate (3; AEA), eugenyl acetate (4), trans-p-coumaraldehyde (5), trans-p-acetoxycinnamyl alcohol (6), and trans-p-coumaryl diacetate (7), were isolated from the 95% EtOH and hot water extracts of the rhizomes of A. galanga by chromatographic method. Phenylpropanoids 1-7 were evaluated for glucose-stimulated insulin secretion (GSIS) effect and α-glucosidase inhibitory activity. Phenylpropanoids 1-4 increase GSIS effect without cytotoxicity in rat INS-1 pancreatic ß-cells. In addition, INS-1 cells were treated with AEA (3) to determine a plausible mechanism of ß-cell function and insulin secretion through determining the activation of insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1). Upon treatment with AEA (3), INS-1 cells showed an increase in these protein expressions. Meanwhile, AEA (3) exhibited α-glucosidase inhibitory activity. On the basis of the above findings, we suggest AEA (3) as a potential antidiabetic agent.
RESUMO
The endophytic fungus Colletotrichum gloeosprioides JS0419, isolated from the leaves of the halophyte Suaeda japonica, produced four new ß-resorcylic acid derivatives, colletogloeopyrones A and B (1 and 2) and colletogloeolactones A and B (3 and 4), and seven known ß-resorcylic acid lactones (RALs). The structures of these compounds were elucidated via analysis of the high-resolution mass spectrometry and nuclear magnetic resonance data. Compounds 1 and 2 showed a dihydrobenzopyranone ring with a linear C9 side chain, which is rarely observed in RALs. All isolated compounds were evaluated for their anti-inflammatory activities. Colletogloeopyrone A (1), monocillin II (5), and monocillin II glycoside (6) were effective in reducing nitric oxide production without cytotoxicity. They also inhibited the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as demonstrated by the expression of mRNA corresponding to IL-6 and TNF-α. Mechanistically, compounds 5 and 6 significantly inhibited the protein expression of nuclear factor-κB, IκBα, IKKα/ß, inducible nitric oxide synthase, and cyclooxygenase (COX)-2, whereas compound 1 only inhibited COX-2 expression. This study indicated that RAL-type compounds 1, 5, and 6 demonstrated potential anti-inflammatory activity by inhibiting the synthesis of pro-inflammatory cytokines.
RESUMO
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses.
Assuntos
Microglia , Neuralgia , Camundongos , Animais , Oxaliplatina/farmacologia , Qualidade de Vida , Modelos Animais de Doenças , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Medula EspinalRESUMO
Human skin is composed of three layers, of which the dermis is composed of an extracellular matrix (ECM) comprising collagen, elastin, and other proteins. These proteins are reduced due to skin aging caused by intrinsic and extrinsic factors. Among various internal and external factors related to aging, ultraviolet (UV) radiation is the main cause of photoaging of the skin. UV radiation stimulates DNA damage, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine production such as tumor necrosis factor-alpha (TNF-α), and promotes ECM degradation. Stimulation with ROS and TNF-α upregulates mitogen-activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB), and activator protein 1 (AP-1) transcription factors that induce the expression of the collagenase matrix metalloproteinase-1 (MMP-1). Moreover, TNF-α induces intracellular ROS production and several molecular pathways. Skin aging progresses through various processes and can be prevented through ROS generation and TNF-α inhibition. In our previous study, 2-O-ß-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (GDHBA) was isolated from the Morus alba (mulberry) fruits and its inhibitory effect on MMP-1 secretion was revealed. In this study, we focused on the effect of GDHBA on TNF-α-induced human dermal fibroblasts (HDFs). GDHBA (50 µM) inhibited ROS generation (18.8%) and decreased NO (58.4%) and PGE2 levels (53.8%), significantly. Moreover, it decreased MMP-1 secretion (55.3%) and increased pro-collagen type I secretion (207.7%). GDHBA (50 µM) decreased the expression of different MAPKs as per western blotting; p-38: 35.9%; ERK: 47.9%; JNK: 49.5%; c-Jun: 32.1%; NF-κB: 55.9%; and cyclooxygenase-2 (COX-2): 31%. This study elucidated a novel role of GDHBA in protecting against skin inflammation and damage through external stimuli, such as UV radiation.