RESUMO
In the case of limited sampling windows or truncation of free induction decays (FIDs) for artifact removal in proton magnetic resonance spectroscopy (1H-MRS) and spectroscopic imaging (1H-MRSI), metabolite quantification needs to be performed on incomplete FIDs. Given that FIDs are naturally time-domain sequential data, we investigated the potential of recurrent neural network (RNN)-types of neural networks (NNs) in the processing of incomplete human brain FIDs with or without FID restoration prior to quantitative analysis at 3.0T. First, we employed an RNN encoder-decoder and developed it to restore incomplete FIDs (rRNN) with different amounts of sampled data. The quantification of metabolites from the rRNN-restored FIDs was achieved by using LCModel. Second, we modified the RNN encoder-decoder and developed it to convert incomplete brain FIDs into incomplete metabolite-only FIDs without restoration, followed by linear regression using a metabolite basis set for quantitative analysis (cRNN). In consideration of the practical benefit of the FID restoration with respect to pure zero-filling, development and analysis of the NNs were focused particularly on the incomplete FIDs with only the first 64 data points retained. All NNs were trained on simulated data and tested mainly on in vivo data acquired from healthy volunteers (n = 27). Strong correlations were obtained between the NN-derived and ground truth metabolite content (LCModel-derived content on fully sampled FIDs) for myo-inositol, total choline, and total creatine (normalized to total N-acetylaspartate) on the in vivo data using both rRNN (R = 0.83-0.94; p ≤ 0.05) and cRNN (R = 0.86-0.91; p ≤ 0.05). RNN-types of NNs have potential in the quantification of the major brain metabolites from the FIDs with substantially reduced sampled data points. For the metabolites with low to medium SNR, the performance of the NNs needs to be further improved, for which development of more elaborate and advanced simulation techniques would be of help, but remains challenging.
RESUMO
Two-dimensional Ruddlesden-Popper series are an excellent system for tuning physical properties of the perovskite by controlling the layer number (n). For instance, bandgap and exciton binding energies of the series gradually increase upon reducing n via enhanced quantum and dielectric confinements. Here, we present findings that challenge the anticipated trend in electron-hole exchange interaction within (BA)2MAn-1PbnBr3n+1 (n = 1-3), which causes spin-dependent exciton level splitting into bright and dark states, where the latter is partially visible near the surface of the Br-based two-dimensional Ruddlesden-Popper series. Contrary to expectations, the smallest gap between bright and dark exciton levels is observed from n = 2 at 10 K. This anomaly results in the strongest biexciton binding between two dark excitons occurring at n = 2, rather than at n = 1 as initially hypothesized. The observed anomaly arises from a phase transition induced by octahedral tilting occurring only for n = 2 near 100 K as confirmed by temperature-dependent optical and X-ray diffraction measurements. Our results show that Coulomb interaction need not vary gradually with n, which can impact the optoelectronic properties of the Ruddlesden-Popper series.
RESUMO
BACKGROUND: Anhedonia is an enduring symptom of subthreshold depression (StD) and predict later onset of major depressive disorder (MDD). Brain structural covariance describes the inter-regional distribution of morphological changes compared to healthy controls (HC) and reflects brain maturation and disease progression. We investigated neural correlates of anhedonia from the structural covariance. METHODS: T1-weighted brain magnetic resonance images were acquired from 79 young adults (26 StD, 30 MDD, and 23 HC). Intra-individual structural covariance networks of 68 cortical surface area (CSAs), 68 cortical thicknesses (CTs), and 14 subcortical volumes were constructed. Group-level hubs and principal edges were defined using the global and regional graph metrics, compared between groups, and examined for the association with anhedonia severity. RESULTS: Global network metrics were comparable among the StD, MDD, and HC. StD exhibited lower centralities of left pallidal volume than HC. StD showed higher centralities than HC in the CSAs of right rostral anterior cingulate cortex (ACC) and pars triangularis, and in the CT of left pars orbitalis. Less anhedonia was associated with higher centralities of left pallidum and right amygdala, higher edge betweenness centralities in the structural covariance (EBSC) of left postcentral gyrus-parahippocampal gyrus and LIPL-right amygdala. More anhedonia was associated with higher centralities of left inferior parietal lobule (LIPL), left postcentral gyrus, left caudal ACC, and higher EBSC of LIPL-left postcentral gyrus, LIPL-right lateral occipital gyrus, and left caudal ACC-parahippocampal gyrus. LIMITATIONS: This study has a cross-sectional design. CONCLUSIONS: Structural covariance of brain morphologies within the salience and limbic networks, and among the salience-limbic-default mode-somatomotor-visual networks, are possible neural correlates of anhedonia in depression.
Assuntos
Anedonia , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Humanos , Anedonia/fisiologia , Masculino , Feminino , Adulto Jovem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/patologia , Adulto , Depressão/diagnóstico por imagem , Depressão/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologiaRESUMO
Phase-pure polycrystalline Ba4RuMn2O10 was prepared and determined to adopt the noncentrosymmetric polar crystal structure (space group Cmc21) based on results of second harmonic generation, convergent beam electron diffraction, and Rietveld refinements using powder neutron diffraction data. The crystal structure features zigzag chains of corner-shared trimers, which contain three distorted face-sharing octahedra. The three metal sites in the trimers are occupied by disordered Ru/Mn with three different ratios: Ru1:Mn1 = 0.202(8):0.798(8), Ru2:Mn2 = 0.27(1):0.73(1), and Ru3:Mn3 = 0.40(1):0.60(1), successfully lowering the symmetry and inducing the polar crystal structure from the centrosymmetric parent compounds Ba4T3O10 (T = Mn, Ru; space group Cmca). The valence state of Ru/Mn is confirmed to be +4 according to X-ray absorption near-edge spectroscopy. Ba4RuMn2O10 is a narrow bandgap (â¼0.6 eV) semiconductor exhibiting spin-glass behavior with strong magnetic frustration and antiferromagnetic interactions.
RESUMO
With the escalating global demand for electric vehicles and sustainable energy solutions, increasing focus is placed on developing electrochemical systems that offer fast charging and high-power output, primarily governed by mass transport. Accordingly, porous carbons have emerged as highly promising electrochemically active or supporting materials due to expansive surface areas, tunable pore structures, and superior electrical conductivity, accelerating surface reaction. Yet, while substantial research has been devoted to crafting various porous carbons to increase specific surface areas, the optimal utilization of the surfaces remains underexplored. This review emphasizes the critical role of the fluid dynamics within multiscale porous carbonaceous electrodes, leading to substantially enhanced pore utilization in electrochemical systems. It elaborates on strategies of using sacrificial templates for incorporating meso/macropores into microporous carbon matrix, while exploiting the unique properties of polyphenol moieties such as sustainable carbons derived from biomass, inherent adhesive/cohesive interactions with template materials, and facile complexation capabilities with diverse materials, thereby enabling adaptive structural modulations. Furthermore, it explores how multiscale pore configurations influence pore-utilization efficiency, demonstrating advantages of incorporating multiscale pores. Finally, synergistic impact on the high-power electrochemical systems is examined, attributed to improved fluid-dynamic behavior within the carbonaceous frameworks, providing insights for advancing next-generation high-power electrochemical applications.
RESUMO
Structural imperfections can cause both beneficial and detrimental consequences on the excitonic characteristics of transition metal dichalcogenides (TMDs). Regarding valley selection, structural defects typically promote valley depolarization in monolayer TMDs, but defect healing via an additional growth process can restore valley polarization in vertical heterobilayers (VHs). In this study, we analyzed the valley polarization of center-nucleated and edge-nucleated VHs (WS2/MoS2) grown using a controlled growth process and discovered that defect-related photoluminescence (PL) is strongly suppressed in the center-nucleated VHs due to defect healing. Additionally, we demonstrated that the valley polarization of lower-lying intralayer excitons is more sensitive to the defect density of the sample than to higher-lying intralayer excitons. Despite defect healing in the center-nucleated VHs, the temperature-dependent PL study indicated that valley depolarization of the lower-lying intralayer excitons becomes significant below 100 K because of stronger hybridization of defect states. Also, we conducted a comprehensive study on the excitation intensity dependence to investigate the electron-doping-induced Auger recombination mechanism, which also contributes to valley depolarization of intralayer excitons via regeneration of intervalley trions. Our findings provide valuable insight into the development of VH-based valleytronic devices.
RESUMO
BACKGROUND: Cold ischemia-reperfusion injury (IRI) is an unavoidable complication of kidney transplantation. We investigated the role of regulatory T cells (Treg) in cold IRI and whether the interleukin (IL)-2/anti-IL-2 antibody complex (IL-2C) can ameliorate cold IRI. METHODS: We developed a cold IRI mouse model using kidney transplantation and analyzed the IL-2C impact on cold IRI in acute, subacute and chronic phases. RESULTS: Treg transfer attenuated cold IRI, while Treg depletion aggravated cold IRI. Next, IL-2C administration prior to IRI mitigated acute renal function decline, renal tissue damage and apoptosis and inhibited infiltration of effector cells into kidneys and pro-inflammatory cytokine expression on day 1 after IRI. On day 7 after IRI, IL-2C promoted renal regeneration and reduced subacute renal damage. Furthermore, on day 28 following IRI, IL-2C inhibited chronic fibrosis. IL-2C decreased reactive oxygen species-mediated injury and improved antioxidant function. When IL-2C was administered following IRI, it also increased renal regeneration with Treg infiltration and suppressed renal fibrosis. In contrast, Treg depletion in the presence of IL-2C eliminated the positive effects of IL-2C on IRI. CONCLUSION: Tregs protect kidneys from cold IRI and IL-2C inhibited cold IRI by increasing the renal Tregs, suggesting a potential of IL-2C in treating cold IRI. KEY POINTS: Interleukin (IL)-2/anti-IL-2 antibody complex attenuated acute renal injury, facilitated subacute renal regeneration and suppressed chronic renal fibrosis after cold ischemia-reperfusion injury (IRI) by increasing the renal Tregs. IL-2/anti-IL-2 antibody complex decreased reactive oxygen species-mediated injury and improved antioxidant function. This study suggests the therapeutic potential of the IL-2/anti-IL-2 antibody complex in kidney transplantation-associated cold IR.
Assuntos
Injúria Renal Aguda , Transplante de Rim , Traumatismo por Reperfusão , Animais , Camundongos , Interleucina-2/metabolismo , Linfócitos T Reguladores , Complexo Antígeno-Anticorpo , Transplante de Rim/efeitos adversos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rim , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , FibroseRESUMO
OBJECTIVES: Addictions have recently been classified as substance use disorder (SUD) and behavioral addiction (BA), but the concept of BA is still debatable. Therefore, it is necessary to conduct further neuroscientific research to understand the mechanisms of BA to the same extent as SUD. The present study used machine learning (ML) algorithms to investigate the neuropsychological and neurophysiological aspects of addictions in individuals with internet gaming disorder (IGD) and alcohol use disorder (AUD). METHODS: We developed three models for distinguishing individuals with IGD from those with AUD, individuals with IGD from healthy controls (HCs), and individuals with AUD from HCs using ML algorithms, including L1-norm support vector machine, random forest, and L1-norm logistic regression (LR). Three distinct feature sets were used for model training: a unimodal-electroencephalography (EEG) feature set combined with sensor- and source-level feature; a unimodal-neuropsychological feature (NF) set included sex, age, depression, anxiety, impulsivity, and general cognitive function, and a multimodal (EEG + NF) feature set. RESULTS: The LR model with the multimodal feature set used for the classification of IGD and AUD outperformed the other models (accuracy: 0.712). The important features selected by the model highlighted that the IGD group had differential delta and beta source connectivity between right intrahemispheric regions and distinct sensor-level EEG activities. Among the NFs, sex and age were the important features for good model performance. CONCLUSIONS: Using ML techniques, we demonstrated the neurophysiological and neuropsychological similarities and differences between IGD (a BA) and AUD (a SUD).
Assuntos
Alcoolismo , Comportamento Aditivo , Jogos de Vídeo , Humanos , Alcoolismo/diagnóstico , Alcoolismo/psicologia , Transtorno de Adição à Internet , Comportamento Aditivo/psicologia , Eletroencefalografia , Comportamento Impulsivo , Internet , Jogos de Vídeo/psicologia , Encéfalo , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: To predict hematoma growth in intracerebral hemorrhage patients by combining clinical findings with non-contrast CT imaging features analyzed through deep learning. METHODS: Three models were developed to predict hematoma expansion (HE) in 572 patients. We utilized multi-task learning for both hematoma segmentation and prediction of expansion: the Image-to-HE model processed hematoma slices, extracting features and computing a normalized DL score for HE prediction. The Clinical-to-HE model utilized multivariate logistic regression on clinical variables. The Integrated-to-HE model combined image-derived and clinical data. Significant clinical variables were selected using forward selection in logistic regression. The two models incorporating clinical variables were statistically validated. RESULTS: For hematoma detection, the diagnostic performance of the developed multi-task model was excellent (AUC, 0.99). For expansion prediction, three models were evaluated for predicting HE. The Image-to-HE model achieved an accuracy of 67.3%, sensitivity of 81.0%, specificity of 64.0%, and an AUC of 0.76. The Clinical-to-HE model registered an accuracy of 74.8%, sensitivity of 81.0%, specificity of 73.3%, and an AUC of 0.81. The Integrated-to-HE model, merging both image and clinical data, excelled with an accuracy of 81.3%, sensitivity of 76.2%, specificity of 82.6%, and an AUC of 0.83. The Integrated-to-HE model, aligning closest to the diagonal line and indicating the highest level of calibration, showcases superior performance in predicting HE outcomes among the three models. CONCLUSION: The integration of clinical findings with non-contrast CT imaging features analyzed through deep learning showed the potential for improving the prediction of HE in acute spontaneous intracerebral hemorrhage patients.
Assuntos
Aprendizado Profundo , Humanos , Tomografia Computadorizada por Raios X , Estudos Retrospectivos , Hemorragia Cerebral , HematomaRESUMO
BACKGROUND: To investigate the prognostic value of spatial features from whole-brain MRI using a three-dimensional (3D) convolutional neural network for adult-type diffuse gliomas. METHODS: In a retrospective, multicenter study, 1925 diffuse glioma patients were enrolled from 5 datasets: SNUH (nâ =â 708), UPenn (nâ =â 425), UCSF (nâ =â 500), TCGA (nâ =â 160), and Severance (nâ =â 132). The SNUH and Severance datasets served as external test sets. Precontrast and postcontrast 3D T1-weighted, T2-weighted, and T2-FLAIR images were processed as multichannel 3D images. A 3D-adapted SE-ResNeXt model was trained to predict overall survival. The prognostic value of the deep learning-based prognostic index (DPI), a spatial feature-derived quantitative score, and established prognostic markers were evaluated using Cox regression. Model evaluation was performed using the concordance index (C-index) and Brier score. RESULTS: The MRI-only median DPI survival prediction model achieved C-indices of 0.709 and 0.677 (BSâ =â 0.142 and 0.215) and survival differences (Pâ <â 0.001 and Pâ =â 0.002; log-rank test) for the SNUH and Severance datasets, respectively. Multivariate Cox analysis revealed DPI as a significant prognostic factor, independent of clinical and molecular genetic variables: hazard ratioâ =â 0.032 and 0.036 (Pâ <â 0.001 and Pâ =â 0.004) for the SNUH and Severance datasets, respectively. Multimodal prediction models achieved higher C-indices than models using only clinical and molecular genetic variables: 0.783 vs. 0.774, Pâ =â 0.001, SNUH; 0.766 vs. 0.748, Pâ =â 0.023, Severance. CONCLUSIONS: The global morphologic feature derived from 3D CNN models using whole-brain MRI has independent prognostic value for diffuse gliomas. Combining clinical, molecular genetic, and imaging data yields the best performance.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Adulto , Humanos , Prognóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/cirurgia , Imageamento por Ressonância Magnética/métodosRESUMO
In2 Se3 , 2D ferroelectric-semiconductor, is a promising candidate for next-generation memory device because of its outstanding electrical properties. However, the large-area manufacturing of In2 Se3 is still a big challenge. In this work, spray pyrolysis technique is introduced for the growth of large-area In2 Se3 thin film. A polycrystalline γ-In2 Se3 layer can be grown on 15 cm × 15 cm glasss at the substrate temperature of 275 °C. The In2 Se3 ferroelectric-semiconductor field effect transistor (FeS-FET) on glass substrate demonstrates a large hysteresis window of 40.3 V at the ±40 V of gate voltage sweep and excellent uniformity. The FeS-FET exhibits an electron field effect mobility of 0.97 cm2 V-1 s-1 and an on/off current ratio of >107 in the transfer curves. The memory behavior of the large-area, In2 Se3 FeS-FETs for next-generation memory is demonstrated.
RESUMO
The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.
RESUMO
PURPOSE: We aimed to compare the accuracy of the intraocular lens (IOL) calculation formula using the standard keratometry (K) and total K (TK) during the femtosecond laser-assisted cataract surgery (FLACS) with a monofocal IOL with enhanced intermediate function using currently used formulas. METHODS: A retrospective review of 125 eyes from 125 patients who had undergone FLACS with implantation of monofocal IOL with enhanced intermediate function was conducted. The predicted refractive power was calculated using an optical biometer (IOLmaster 700) according to the K and TK in the Barrett Universal II, SRK/T, Haigis, and Holladay 2 formulas. Absolute prediction error (APE) obtained from the actual postoperative refractive outcomes and the refractive error predicted in each formula was compared one month after surgery. RESULTS: Mean APE ranged between 0.29 and 0.39 diopters (D) regardless of the calculation formula and the method of measuring corneal curvature. Significant differences were observed in the APE from the four formulas and the two keratometric measurements (p = 0.014). In a total of 125 eyes from 125 patients, the mean APE was lowest with the Barrett Universal II formula. Across all formulas, both the mean APE and the median APE tended to be lower for K than for TK, although there was no significant difference. Approximately 70% to 80% of the patients were included within 0.5 D of the refractive error across all formulas. The percentage of eyes within 0.5 D of APE outcomes was not statistically different between the K and TK data when using each formula. CONCLUSIONS: Keratometric measurements considering the poster corneal curvature did not show any additional advantages when implanting the monofocal IOL with enhanced intermediate function during the FLACS.
Assuntos
Catarata , Hominidae , Lentes Intraoculares , Facoemulsificação , Erros de Refração , Humanos , Animais , Implante de Lente Intraocular/métodos , Facoemulsificação/métodos , Refração Ocular , Estudos Retrospectivos , Biometria/métodos , LasersRESUMO
A series of homochiral coordination polymers (HCPs), [M2 (SIAP)2 (bpy)2 ] [M(S)] and [M2 (RIAP)2 (bpy)2 ] [M(R)] (M = Zn or Cd, SIAP or RIAP = (S,S)- or (R,R)- 2,2'-(isophthaloylbis(azanediyl))di-propionic acid, bpy = 4,4'-bipyridine), is successfully synthesized through solvothermal reactions, self-assembling d10 metal cations, chiral dicarboxylic ligands, and π-conjugated bipyridyl ligands. The HCPs crystallize in the extremely rare triclinic chiral space group, P1, and present 3D framework structures attributed to the strong intermolecular interactions, such as hydrogen bonds and π-π stacking. Due to the unique crystal structures, the title compounds reveal efficient photoluminescence emission across a broad visible range, with significant brightness and color tuning by varying the excitation wavelength. Moreover, they exhibit efficient phase-matched second-harmonic generation (SHG) with very high laser-induced damage thresholds, essential for high-power nonlinear optical (NLO) applications. Intriguingly, the title compounds exhibit a measurable contrast in the SHG response under right- and left-handed circularly polarized excitation, thereby providing a unique case of SHG circular dichroism from the chiral centers of SIAP2- or RIAP2- ligand packed in the noncentrosymmetric environment. These exceptional attributes position these HCPs as promising candidates for multifunctional materials, with potential applications ranging from NLO devices to tailored luminescent systems with polarization control.
RESUMO
Background and aims: Resting-state brain activity may be associated with the ability to perform tasks; however, a multimodal approach involving resting-state functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) has not been widely used to investigate addictive disorders. Methods: We explored resting-state fMRI and auditory oddball ERP values from 26 with internet gaming disorder (IGD) patients and 27 age- and intelligence quotient-matched healthy controls (HCs). To assess the characteristics of resting-state fMRI, we calculated regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional amplitude of low-frequency fluctuation (fALFF); we also calculated the P3 component of the ERPs. Results: Compared with HCs, the individuals with IGD exhibited significant decreases in ReHo and fALFF values in the left inferior occipital gyrus, increased ReHo and ALFF values in the right precuneus, increased ALFF in the left superior frontal gyrus, and lower P3 amplitudes in the midline centro-parietal area during the auditory ERP task. Furthermore, the regional activity of resting-state fMRI in the right inferior temporal gyrus and the occipital regions were positively correlated with the P3 amplitudes in IGD patients, whereas ReHo values of the left hippocampus and the right amygdala were negatively correlated with P3. Discussion and conclusions: Our results suggest that IGD patients have difficulty interacting effectively with cognitive function and sensory processing, although its interpretations need some cautions. The findings in this study will broaden the overall understanding of the neurobiological mechanisms that underlie IGD pathophysiology.
Assuntos
Comportamento Aditivo , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Transtorno de Adição à Internet , Comportamento Aditivo/diagnóstico por imagem , Lobo Temporal , Mapeamento Encefálico/métodosRESUMO
Subthreshold depression (StD) is associated an increased risk of developing major depressive disorder (MDD) and suicidality. Suicidality could be linked to distress intolerance and use of context-dependent strategies. We identified neural correlates of executive functioning among the hubs in the resting-state functional connectome (rs-FCN) and examined associations with recent suicidality in StD and MDD. In total, 79 young adults [27 StD, 30 MDD, and 23 healthy controls (HC)] were scanned using magnetic resonance imaging. Neurocognitive measures of the mean latency to correct five moves in the One Touch Stockings of Cambridge (OTSMLC5), spatial working memory between errors (SWMBE), rapid visual information processing A' (RVPA'), and the stop signal reaction time in the stop signal test (SSTSSRT) were obtained. Global graph metrics were calculated to measure the network integration, segregation, and their balance in the rs-FCN. Regional graph metrics reflecting the number of neighbors (degree centrality; DC), participation in the shortcuts (betweenness centrality; BC), and accessibility to intersections (eigenvector centrality; EC) in the rs-FCN defined group-level hubs for StD, HC, and MDD, separately. Global network metrics were comparable among the groups (all P > 0.05). Among the group-level hubs, regional graph metrics of left dorsal anterior insula (dAI), right dorsomedial prefrontal cortex (dmPFC), right rostral temporal thalamus, right precuneus, and left postcentral/middle temporal/anterior subgenual cingulate cortices were different among the groups. Further, significant associations with neurocognitive measures were found in the right dmPFC with SWMBE, and left dAI with SSTSSRT and RVPA'. Shorter OTSMLC5 was related to the lower centralities of right thalamus and suffer of recent 1-year suicidal ideation (all Ps < 0.05 in ≥ 2 centralities out of DC, BC, and EC). Collectively, salience and thalamic networks underlie spatial strategy and planning, response inhibition, and suicidality in StD and MDD. Anti-suicidal therapies targeting executive function and modulation of salience-thalamic network in StD and MDD are required.
Assuntos
Transtorno Depressivo Maior , Suicídio , Humanos , Adulto Jovem , Função Executiva , Ideação Suicida , Depressão , Imageamento por Ressonância Magnética , Encéfalo/patologiaRESUMO
Our study evaluated the clinical outcomes after implantation of a monofocal intraocular lens (IOL) with enhanced intermediate function in eyes with epiretinal membrane (ERM). Patients with preexisting ERM who underwent cataract surgery with implantation of monofocal IOL with enhanced intermediate function were included retrospectively. According to the ERM grade and central subfield thickness (CST) obtained from preoperative optical coherence tomography, patients were divided into non-fovea-involving and fovea-involving ERM groups. At 1 month after surgery, uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), uncorrected near visual acuity (UNVA), contrast sensitivity, defocus curve, and satisfaction questionnaire were evaluated. Postoperative clinical findings were compared with age-matched controls without ERM. A total of 50 patients' eyes (28 and 22 in the non-fovea-involving and fovea-involving ERM groups, respectively) were compared with 42 control eyes. One month post-surgery, significant differences in UDVA, CDVA, and CST (corrected P was < 0.001, = 0.001, and < 0.001, respectively) were observed between the fovea-involving ERM and control group; however, no significant differences in UIVA and UNVA were observed between the two groups. Contrast sensitivity showed inferior results in the fovea-involving group without significance. Photic phenomena were reported less in the fovea-involving group than in the non-fovea-involving group. More than 70% of patients in both ERM groups were satisfied. Implantation of monofocal IOL with enhanced intermediate function could be a good option for patients with ERM that need intermediate vision.
Assuntos
Membrana Epirretiniana , Lentes Intraoculares , Facoemulsificação , Humanos , Implante de Lente Intraocular , Membrana Epirretiniana/cirurgia , Estudos Retrospectivos , Desenho de Prótese , Satisfação do Paciente , Refração OcularRESUMO
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Assuntos
Neuralgia , Doenças Neuroinflamatórias , Ratos , Animais , Neuralgia/terapia , Medula Espinal , Terapia Genética , Inflamação , Células Receptoras Sensoriais , Hiperalgesia , Gânglios EspinaisRESUMO
Monolayer transition metal dichalcogenides (TMDs) have been extensively studied for their optoelectronic properties and applications. However, even at moderate exciton densities, their light-emitting capability is severely limited by Auger-type exciton-exciton annihilation (EEA). Previous work on EEA used oversimplified models in the presence of excitonic complexes, resulting in seriously underestimated values for the Auger coefficient. In this work, we transferred monolayer WS2 on a gold substrate with hBN encapsulation, where excitons persist as the main species at 3-300 K via metal proximity. We numerically solved the rate equation for excitons to accurately determine the Auger coefficient as a function of temperature by considering laser pulse width and spatially inhomogeneous exciton distribution. We found that the Auger coefficient consists of temperature-dependent and independent terms, consistent with a theoretical model for direct and exchange processes, respectively. We believe that our results provide a guide for enhancing the luminescence quantum yield of TMDs.
RESUMO
Our study compared treatment efficacy between cut-off and notch filters in intense pulsed light (IPL) therapy for meibomian gland dysfunction (MGD) through a prospective, randomized paired-eye trial. Additionally, the efficacy of IPL treatment alone was investigated by restricting other conventional treatments. One eye was randomly selected for an acne filter and the other for a 590-nm filter. Identical four regimens of IPL treatments were administered. The tear break-up time (TBUT), Oxford scale, Sjögren's International Clinical Collaborative Alliance (SICCA) staining score, tear matrix metalloproteinase-9 (MMP-9) expression, tear osmolarity, and Ocular Surface Disease Index (OSDI) questionnaires were evaluated before and after IPL. Meibomian gland (MG) parameters were measured. When combining the results from both filters, the TBUT, SICCA staining score, OSDI score, and upper and lower lid meibum expressibility were improved after IPL. No significant differences were found between the two filters in the TBUT, Oxford scale, SICCA staining score, MMP-9 expression, tear osmolarity, and MG parameters. Although not significant, the acne filter showed better treatment efficacy than that in the 590-nm filter. IPL alone is efficacious in terms of ocular surface parameters, MG function, and subjective symptoms. Regarding filter selection, both acne and 590-nm filters are promising options for MGD treatment.