Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1261255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854881

RESUMO

Introduction: Astrocytes play crucial role in modulating immune response in the damaged central nervous system. Numerous studies have investigated the relationship between immune responses in astrocytes and brain diseases. However, the potential application of nanomaterials for alleviating neuroinflammation induced by astrocytes remains unexplored. Method: In this study, we utilized electrophoretic deposition (EPD) to coat graphene oxide (GO) onto titanium (Ti) to enhance the bioactivity of Ti. Results: We confirmed that GO-Ti could improve cell adhesion and proliferation of astrocytes with upregulated integrins and glial fibrillary acidic protein (GFAP) expression. Moreover, we observed that astrocytes on GO-Ti exhibited a heightened immune response when exposed to lipopolysaccharide (LPS). Although pro-inflammatory cytokines increased, anti-inflammatory cytokines and brain-derived neurotrophic factors involved in neuroprotective effects were also augmented through nuclear localization of the yes-associated protein (YAP) and nuclear factor kappa B (NF-κB). Discussion: Taken together, GO-Ti could enhance the neuroprotective function of astrocytes by upregulating the expression of anti-inflammatory cytokines and neuroprotective factors with improved cell adhesion and viability. Consequently, our findings suggest that GO-Ti has the potential to induce neuroprotective effects by regulating cell activity.

2.
Eur J Pharm Sci ; 188: 106525, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437854

RESUMO

The recent progress in nanoparticle applications, such as tumor-targeting, has enabled specific delivery of chemotherapeutics to malignant tissues with enhanced local efficacy while limiting side effects. However, existing delivery systems leave much room for improvement in terms of achieving enhanced colloidal stability in fluid medium, efficient targeting of intended sites, and effective release of therapeutic drugs into diseased cells. Here, an efficient stimuli-responsive nanocarrier for mammalian cells, termed RGD-NAMs, was developed, which enabled temperature- and pH-sensitive release of drug loads. The RGD-NAMs comprise two parts: a stimuli-responsive copolymer shell (NIBIm-AA-RGD) and drug-container core (MSNs). The RGD-NAMs have a stable drug-loading capacity with a marked difference in the release rate depending on the temperature and pH conditions. The RGD-NAMs also exhibit high colloidal stability in SBF (Stimulated body fluid) solutions and minimal toxicity in skeletal myoblasts (C2C12) and bovine arterial endothelial cells (BAEC). The doxorubicin-loaded RGD-NAMs induced a cytotoxic effect in a dose-dependent manner, which was furthered by an increase in temperature from 37 to 40 °C. Moreover, significant control of the release rate and the amount were achieved through pH change. This novel, smart drug-delivery system with high responsiveness to temperature and pH changes has wide application prospects in biomedical fields, including the theragnosis of tumors and vascular diseases.


Assuntos
Nanopartículas , Neoplasias , Animais , Bovinos , Humanos , Portadores de Fármacos/farmacologia , Dióxido de Silício , Células Endoteliais , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Nanopartículas/uso terapêutico , Oligopeptídeos , Concentração de Íons de Hidrogênio , Porosidade , Mamíferos
3.
Carbohydr Polym ; 303: 120473, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657863

RESUMO

A combination of hydrogel materials, and therapeutic agents have been actively reported to facilitate bone defect healing. However, conventionally hydrogels using cross-linker would result in low stability of the hydrogel itself, loss of agents during cross-linking, and complexity of use. In this study, alendronate was tethered to an AlA to improve its bone healing and drug-loading stability. AlA was further functionalized with Ca2+ (AlACa). A mixture of AlACa and alginate formed AlAA hydrogel. The gelation time of AlAA was sufficient for injecting into the defect site. The hydrogel stiffness was controlled, while the stress-relaxation time was fixed. In vitro cell tests demonstrated that the AlAA promoted proliferation and differentiation behaviors. In particular, AlAA showed the best mechanical stiffness with appropriate stress-relaxation and cellular behavior, indicating that it would be beneficial as a scaffold in the bone tissue engineering field.


Assuntos
Hidrogéis , Osteogênese , Hidrogéis/farmacologia , Alicerces Teciduais , Alendronato/farmacologia , Cálcio , Engenharia Tecidual , Alginatos/farmacologia
4.
Materials (Basel) ; 14(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442976

RESUMO

MXenes with a two-dimensional (2D) structure have attracted attention as potential biomedical materials. In this study, Ti3C2 MXene particles with 2D-lamellar structures were intercalated and their potential as a biomaterial was evaluated using human mesenchymal stem cells. Intercalated MXene was characterized in terms of microstructure, phase composition, and size. Cell proliferation experiments with MXene particles confirmed that concentrations >50 µg/mL were cytotoxic, while concentrations <20 µg/mL promoted osteogenic differentiation. Moreover, MXene effectively facilitated the early and late osteogenic gene expression.

5.
Adv Funct Mater ; 31(22)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36213489

RESUMO

Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA