Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(24): 6451-6457, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38869084

RESUMO

In the recent era of green and sustainable energy, the demand for effective and efficient energy harvesting has dramatically increased. Piezoelectric energy harvesting, which converts mechanical energy into electrical energy, is considered a viable strategy to achieve this goal. Janus-type nanomaterial, a noncentrosymmetric material with different elemental species in the upper and lower atomic layers, has gained interest due to its exotic properties compared to conventional bulk and symmetric materials. In this work, we systematically design and investigate a new class of Janus nanomaterials with enhanced intrinsic polarization via the successive ionic exchange method. Multiple layers of stability standards, including both thermodynamic and dynamic stabilities, are employed in the high-throughput screening procedure of novel Janus-type nanomaterials. The newly proposed Janus-type nanomaterials exhibit more than 10 times higher piezoelectric response compared to that of reported low-dimensional materials and even comparable to that of bulk materials.

2.
J Am Chem Soc ; 145(41): 22620-22632, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37799086

RESUMO

Nanostructured silicon with an equilibrium shape has exhibited hydrogen evolution reaction activity mainly owing to its high surface area, which is distinct from that of bulk silicon. Such a Wulff shape of silicon favors low-surface-energy planes, resulting in silicon being an anisotropic and predictably faceted solid in which certain planes are favored, but this limits further improvement of the catalytic activity. Here, we introduce nanoporous silicon nanosheets that possess high-surface-energy crystal planes, leading to an unconventional Wulff shape that bolsters the catalytic activity. The high-index plane, uncommonly seen in the Wulff shape of bulk Si, has a band structure optimally aligned with the redox potential necessary for hydrogen generation, resulting in an apparent quantum yield (AQY) of 12.1% at a 400 nm wavelength. The enhanced light absorption in nanoporous silicon nanosheets also contributes to the high photocatalytic activity. Collectively, the strategy of making crystals with nontypical Wulff shapes can provide a route toward various classes of photocatalysts for hydrogen production.

3.
Small ; 18(12): e2107557, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146916

RESUMO

Developing facile methods for inducing phase transformation between metallic and semiconducting 2D transition metal dichalcogenide (TMDC) materials is crucial toward leveraging their use in cutting-edge energy devices. Herein, 2H-to-1T' phase transformations in chemically exfoliated Tungsten Disulfide (WS2 ) nanosheet films, triggered by antioxidants toward highly conductive 2D TMDC electrode materials, are introduced. It is found that antioxidants cause residual LiOx compounds to reduce to Li metal, subsequently inducing 1T' phase transformations in layered WS2 nanosheets, resulting in significantly enhanced conductivity across the overall films. Both thermoelectric devices and supercapacitors are fabricated utilizing the highly conductive 1T' phase WS2 nanosheet films as a working electrode, allowing for outstanding performance due to the increased conductivity of the WS2 nanosheet films. The method constitutes a facile approach toward the use of chemically exfoliated 1T' TMDC nanosheets for highly efficient energy device applications.

4.
Nanoscale ; 13(37): 15721-15730, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524344

RESUMO

Nanocrystals of group 5 tetradymites M2X3 (where M = Bi and Sb, X = Se and Te) are of high technological relevance in modern topological nanoelectronics. However, there is a current lack of a systematic understanding to predict the preferred nanocrystal morphology in experiments where commonly-used equilibrium thermodynamic models appear to fail. In this work, using first-principles DFT calculations with a rationally-extended ab initio atomistic thermodynamics approach coupled to implicit solvation models and Gibbs-Wulff shape constructions, we demonstrate that this absence of predictive power stems from the limitation of equilibrium thermodynamics. By re-tracing and carefully addressing with a more realistic chemical potential definition, we illustrate this shortcoming can be overcome and afford a more rational route to size-engineer and shape-design highly-functional group 5 tetradymite nanoparticles for targeted applications.

5.
Nat Mater ; 20(4): 533-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398123

RESUMO

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm-1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

6.
ACS Appl Mater Interfaces ; 11(44): 41516-41522, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31612706

RESUMO

Strain engineering has been extensively explored for tailoring the material properties and, in turn, improving the device performance of semiconducting thin films. In particular, the effects of strain on the optical properties of these films have attracted considerable research interest, but experimental demonstrations in flexible systems have rarely been reported. Here, we exploited the variable optical properties of flexible ZnS thin films by imposing a controllable external compressive stress during a stretching-driven deposition process. This stress induced crystal anisotropy with an increase in tetragonality, which differs from that of the unstrained cubic ZnS thin films. The refractive index of the films was estimated by means of an envelope method using interference fringes. As a result, the reductions in the refractive index and optical band gap were observed by applying the stretching-driven strains with the resultant compressive stress. The modulated refractive index and its dispersion behavior were further investigated by employing a single-oscillator model to drive subsequent correlative parameters such as dispersion energy, oscillating strength, and high-frequency permittivity. As a proof of concept, an optical lens of ZnS was designed to confirm the effect of in situ stress-mediated optical modulation by detecting the variable focal length with stress.

7.
ACS Appl Mater Interfaces ; 11(3): 2917-2924, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30580514

RESUMO

Wetting of the liquid metal on the solid electrolyte of a liquid metal battery controls the operating temperature and performance of the battery. Liquid sodium electrodes are particularly attractive because of their low cost, natural abundance, and geological distribution. However, they wet poorly on a solid electrolyte near its melting temperature, limiting their widespread suitability for low-temperature batteries to be used for large-scale energy storage systems. Herein, we develop an isolated metal-island strategy that can improve sodium wetting in sodium-beta alumina batteries that allows operation at lower temperatures. Our results suggest that in situ heat treatment of a solid electrolyte followed by bismuth deposition effectively eliminates oxygen and moisture from the surface of the solid electrolyte, preventing the formation of an oxide layer on the liquid sodium, leading to enhanced wetting. We also show that employing isolated bismuth islands significantly improves cell performance, with cells retaining 94% of their charge after the initial cycle, an improvement over cells without bismuth islands. These results suggest that coating isolated metal islands is a promising and straightforward strategy for the development of low-temperature sodium-ß alumina batteries.

8.
J Phys Chem Lett ; 9(20): 5934-5939, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30247923

RESUMO

Experimental verification of optical modulation with external stress has not been easily available in flexible systems. Here, we intentionally induced extra stress in wide band gap ZnO thin films by a unique prestress-driven deposition processing that utilizes a stretching mode. The stretching mode provides homogeneous but biaxial stresses in the hexagonal wurtzite structure, leading to the extension of the c-axis and the contraction of the a-axis. As a result, the reduction of the optical band gap by ∼150 meV was observed for the strain of ∼4.87%. The band gap narrowing was found to occur from the respective downward and upward shifts of the conduction band minimum and valence band maximum under the applied stress. The experimental evidence of optical modulations was supported by the theoretical calculations using density functional theory. The reduced strong interactions between Zn d and O p orbitals were assumed to be responsible for the band gap narrowing.

9.
Nano Lett ; 18(2): 734-739, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29347815

RESUMO

Understanding the mutual interaction between electronic excitations and lattice vibrations is key for understanding electronic transport and optoelectronic phenomena. Dynamic manipulation of such interaction is elusive because it requires varying the material composition on the atomic level. In turn, recent studies on topological insulators (TIs) have revealed the coexistence of a strong phonon resonance and topologically protected Dirac plasmon, both in the terahertz (THz) frequency range. Here, using these intrinsic characteristics of TIs, we demonstrate a new methodology for controlling electron-phonon interaction by lithographically engineered Dirac surface plasmons in the Bi2Se3 TI. Through a series of time-domain and time-resolved ultrafast THz measurements, we show that, when the Dirac plasmon energy is less than the TI phonon energy, the electron-phonon coupling is trivial, exhibiting phonon broadening associated with Landau damping. In contrast, when the Dirac plasmon energy exceeds that of the phonon resonance, we observe suppressed electron-phonon interaction leading to unexpected phonon stiffening. Time-dependent analysis of the Dirac plasmon behavior, phonon broadening, and phonon stiffening reveals a transition between the distinct dynamics corresponding to the two regimes as the Dirac plasmon resonance moves across the TI phonon resonance, which demonstrates the capability of Dirac plasmon control. Our results suggest that the engineering of Dirac plasmons provides a new alternative for controlling the dynamic interaction between Dirac carriers and phonons.

10.
ACS Appl Mater Interfaces ; 9(48): 42050-42057, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29115127

RESUMO

Despite the ubiquitous nature of the Peltier effect in low-dimensional thermoelectric devices, the influence of finite temperature on the electronic structure and transport in the Dirac heterointerfaces of the few-layer graphene and layered tetradymite, Sb2Te3 (which coincidently have excellent thermoelectric properties) are not well understood. In this work, using the first-principles density-functional theory calculations, we investigate the detailed atomic and electronic structure of these Dirac heterointerfaces of graphene and Sb2Te3 and further re-examine the effect of finite temperature on the electronic band structures using a phenomenological temperature-broadening model based on Fermi-Dirac statistics. We then proceed to understand the underlying charge redistribution process in this Dirac heterointerfaces and through solving the Boltzmann transport equation, we present the theoretical evidence of electron-hole asymmetry in its electrical conductivity as a consequence of this charge redistribution mechanism. We finally propose that the hexagonal-stacked Dirac heterointerfaces are useful as efficient p-n junction building blocks in the next-generation thermoelectric devices where the electron-hole asymmetry promotes the thermoelectric transport by "hot" excited charge carriers.

11.
Nanoscale ; 9(29): 10465-10474, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28703835

RESUMO

To build upon the rich structural diversity in the ever-increasing polymorphic phases of two-dimensional phosphorene, we propose different assembly methods (namely, the "bottom-up" and "top-down" approaches) that involve four commonly reported parent phases (i.e. the α-, ß-, γ-, and δ-phosphorene) in combination with the lately reported remarkably low-energy one-dimensional defects in α-phosphorene. In doing so, we generate various periodically repeated phosphorene patterns in these so-called phosphorene flexagons and present their local electron density (via simulated scanning tunneling microscopy (STM) images). These interesting electron density patterns seen in the flexagons (mimicking symmetry patterns that one may typically see in a kaleidoscope) may assist as potential 2D templates where electron-density-guided nanopatterning and nanofabrication in complex organized nanoarchitectures are important.

12.
Adv Mater ; 29(26)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28437015

RESUMO

Ultrathin transition metal dichalcogenides (TMDs) have exotic electronic properties. With success in easy synthesis of high quality TMD thin films, the potential applications will become more viable in electronics, optics, energy storage, and catalysis. Synthesis of TMD thin films has been mostly performed in vacuum or by thermolysis. So far, there is no solution phase synthesis to produce large-area thin films directly on target substrates. Here, this paper reports a one-step quick synthesis (within 45-90 s) of TMD thin films (MoS2 , WS2 , MoSe2 , WSe2 , etc.) on solid substrates by using microwave irradiation on a precursor-containing electrolyte solution. The numbers of the quintuple layers of the TMD thin films are precisely controllable by varying the precursor's concentration in the electrolyte solution. A photodetector made of MoS2 thin film comprising of small size grains shows near-IR absorption, supported by the first principle calculation, exhibits a high photoresponsivity (>300 mA W-1 ) and a fast response (124 µs). This study paves a robust way for the synthesis of various TMD thin films in solution phases.

13.
Nanoscale ; 8(31): 14778-84, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27445229

RESUMO

Many different forms of mechanical and structural deformations have been employed to alter the electronic structure of various modern two-dimensional (2D) nanomaterials. Given the recent interest in the new class of 2D nanomaterials - phosphorene, here we investigate how the rotational strain-dependent electronic properties of low-dimensional phosphorene may be exploited for technological gain. Here, using first-principles density-functional theory, we investigate the mechanical stability of twisted one-dimensional phosphorene nanoribbons (TPNR) by measuring their critical twist angle (θc) and shear modulus as a function of the applied mechanical torque. We find a strong anisotropic, chirality-dependent mechano-electronic response in the hydrogen-passivated TPNRs upon vortical deformation, resulting in a striking difference in the change in the carrier effective mass as a function of torque angle (and thus, the corresponding change in carrier mobility) between the zigzag and armchair directions in these TPNRs. The accompanied tunable band-gap energies for the hydrogen-passivated zigzag TPNRs may then be exploited for various key opto-electronic nanodevices.

14.
Nanoscale ; 7(45): 19073-9, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26515053

RESUMO

Systematic engineering of atomic-scale low-dimensional defects in two-dimensional nanomaterials is a promising method to modulate the electronic properties of these nanomaterials. Defects at interfaces such as grain boundaries and line defects can often be detrimental to technologically important nanodevice operations and thus a fundamental understanding of how such one-dimensional defects may have an influence on their physio-chemical properties is pivotal for optimizing their device performance. Of late, two-dimensional phosphorene has attracted much attention due to its high carrier mobility and good mechanical flexibility. In this study, using density-functional theory, we have investigated the temperature-dependent energetics and electronic structure of single-layered phosphorene with various fault line defects. We have generated different line defect models based on a fault method, rather than the conventional rotation method. This has allowed us to study and identify new low-energy line defects, and we show how these low-energy line defects could well modulate the electronic band gap energies of single-layered two-dimensional phosphorene - offering a range of metallic to semiconducting properties in these newly proposed low-energy line defects in phosphorene.

16.
Phys Chem Chem Phys ; 17(15): 9680-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25704661

RESUMO

Platinum is known as a catalyst with exceptional reactivity for many important reactions, e.g. the oxygen reduction reaction. To reduce the high cost of pure platinum catalysts, platinum on a carbon support is widely used in industrial fuel cell applications. However, these Pt/C systems suffer from poor stability. As a cost-efficient and more durable alternative, Pt single-atom catalysts on a TiN support have recently been suggested, and it has been shown that the single-atom catalysts are stable when anchored at a nitrogen vacancy site on the TiN surface in a nitrogen-lean environment. To further explore the perspective of Pt/TiN catalytic systems, we provide insights into the stability and morphology of Pt nanostructures at the TiN(100) surface, using a density-functional theory approach in combination with ab initio atomistic thermodynamics. Our results show that the formation of two-dimensional Pt nano-layers is preferred over the formation of three-dimensional Pt nano-clusters on the TiN substrate. Similar to the single-atom catalysts, nano-layers of Pt can be stabilized on the TiN(100) surface by surface nitrogen vacancies under nitrogen-lean conditions. By analyzing the electronic metal-support interaction (EMSI) between the Pt nano-layer and the TiN surface with surface defects, we demonstrate that a strong EMSI between the surrounding Ti and Pt atoms is important for stabilizing the catalyst nano-layer at the TiN surface, and that N vacancies lead to stronger Pt-Ti interaction. This work provides a rational computational platform for the design of new generation high-performance Pt-based fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA