Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(34): 10175-10186, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787026

RESUMO

Droplet impact on arbitrary inclined surfaces is of great interest for applications such as antifreezing, self-cleaning, and anti-infection. Research has been focused on texturing the surfaces to alter the contact time and rebouncing angle upon droplet impact. In this paper, using propagating surface acoustic waves (SAWs) along the inclined surfaces, we present a novel technique to modify and control key droplet impact parameters, such as impact regime, contact time, and rebouncing direction. A high-fidelity finite volume method was developed to explore the mechanisms of droplet impact on the inclined surfaces assisted by SAWs. Numerical results revealed that applying SAWs modifies the energy budget inside the liquid medium, leading to different impact behaviors. We then systematically investigated the effects of inclination angle, droplet impact velocity, SAW propagation direction, and applied SAW power on the impact dynamics and showed that by using SAWs, droplet impact on the nontextured hydrophobic and inclined surface is effectively changed from deposition to complete rebound. Moreover, the maximum contact time reduction up to ∼50% can be achieved, along with an alteration of droplet spreading and movement along the inclined surfaces. Finally, we showed that the rebouncing angle along the inclined surface could be adjusted within a wide range.

2.
Flow Turbul Combust ; 101(4): 1157-1171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613191

RESUMO

We present large-eddy simulation (LES) of a high-pressure gas jet that is injecting into a quiescent inert environment. The injection is through a nozzle with a diameter of 1.35 mm. Four injection strategies are considered in which the results of a single continuous injection case are compared with those of double injection cases with different injection splitting timing. In all double injection cases, the injection pulsing interval is kept the same, and the total injected mass is equal to that of the single injection case. On the other hand, the splitting timing is varied to investigate the effects of various injection splitting strategies on the mixture formation and the penetration length of the jet. Results show that the jet penetration length is not so sensitive to the splitting timing whereas the mixing quality can significantly change as a result of shifting the onset of injection splitting toward the end of injection. Especially, it is found that by adopting a post-injection strategy where a single injection splits into the main injection and late small injection near the end of injection period the mixing between the injected gas and ambient air is significantly improved. This trend is not as obvious when the injection splitting timing shifts toward the beginning or even in the middle of injection period. The increase of entrainment in the tail of each injection is one of the underlying physics in the mixing improvement in double injection cases. In addition to that, splitting a single injection into two smaller injections increases the surrounding area of the jet and also stretches it along the axial direction. It can potentially increase the mixing of injected gas with the ambient air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA