Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(8): e35454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39073224

RESUMO

The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.


Assuntos
Antibacterianos , Bandagens , Poliésteres , Cicatrização , Poliésteres/química , Humanos , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Cefazolina/química , Cefazolina/farmacologia , Tecnologia sem Fio , Hidrogéis/química , Animais , Portadores de Fármacos/química
2.
Food Sci Nutr ; 12(4): 2932-2946, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628199

RESUMO

This experiment aimed to assess the effects of ultrasound techniques on the quality of Iranian industrial honey. Honey samples were subjected to ultrasound waves at different frequencies and various parameters. The results showed that both ultrasound treatments (30 or 42 kHz) changed the physical, biochemical, antioxidant, and antibacterial characteristics of honey. Ultrasound treatments at 20 or 45°C for 1, 5, or 10 min reduced moisture, acidity, sugars, ABTS levels, 5-hydroxymethylfurfural content, clostridium, aerobic mesophilic bacteria count, and osmophile count while increasing diastase, phenol, and proline levels. Ultrasound treatment of honey samples at 30 and 42 kHz and different temperatures for varying durations led to a decrease in acidity after 90 and 180 days. Treating honey samples with 42 kHz ultrasound at 45°C for 10 min led to a significant reduction in the amount of reducing sugar. Ultrasonication at different frequencies and temperatures led to higher levels of phenol, ABTS, and proline production, along with a considerable decrease in the total count of aerobic mesophilic bacteria. Our study unveils the potential of ultrasonication to enhance honey quality through multifaceted improvements. Treatment significantly augmented phenolic content and antioxidant capacity, opening avenues for novel honey preservation and quality enhancement strategies. Additionally, ultrasonication effectively controlled honey crystallization while simultaneously improving biochemical, antioxidant, and antibacterial properties. This demonstrates its potential as a comprehensive strategy for honey quality improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA