Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Death Differ ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563261

RESUMO

Transcriptional memory is characterized by a primed cellular state, induced by an external stimulus that results in an altered expression of primed genes upon re-exposure to the inducing signal. Intriguingly, the primed state is heritably maintained across somatic cell divisions even after the initial stimulus and target gene transcription cease. This phenomenon is widely observed across various organisms and appears to enable cells to retain a memory of external signals, thereby adapting to environmental changes. Signals range from nutrient supplies (food) to a variety of stress signals, including exposure to pathogens (foes), leading to long-term memory such as in the case of trained immunity in plants and mammals. Here, we review these priming phenomena and our current understanding of transcriptional memory. We consider different mechanistic models for how memory can work and discuss existing evidence for potential carriers of memory. Key molecular signatures include: the poising of RNA polymerase II machinery, maintenance of histone marks, as well as alterations in nuclear positioning and long-range chromatin interactions. Finally, we discuss the potential adaptive roles of transcriptional memory in the organismal response to its environment from nutrient sensing to trained immunity.

2.
Front Cell Dev Biol ; 11: 1193192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181753

RESUMO

Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.

3.
Mol Biol Cell ; 34(5): br6, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989032

RESUMO

The centromere is a unique chromatin domain that links sister chromatids and forms the attachment site for spindle microtubules in mitosis. Centromere inheritance is largely DNA sequence-independent but strongly reliant on a self-propagating chromatin domain featuring nucleosomes containing the H3 variant CENP-A. Unlike other histones, CENP-A is maintained with unusually high stability in chromatin. Previously, we have shown that mitotic maintenance of CENP-A and other constitutive centromere-associated network (CCAN) proteins is controlled by a dynamic SUMO cycle and that the deSUMOylase SENP6 is necessary for stable maintenance of CENP-A at the centromere. Here, we discover that the removal of SENP6 leads to a rapid loss of the CCAN, followed by a delayed loss of centromeric CENP-A, indicating that the CCAN is the primary SUMO target. We found that the ATP-dependent segregase p97/VCP removes centromeric CENP-A in a SUMO-dependent manner and interacts physically with the CCAN and CENP-A chromatin. Our data suggest a direct role of p97 in removing centromeric CENP-A via SUMOylated CCAN proteins, thereby ensuring centromere homeostasis and potentially preventing ectopic CENP-A accumulation.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteína com Valosina/metabolismo
4.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34037233

RESUMO

Zα domains recognize the left-handed helical Z conformation of double-stranded nucleic acids. They are found in proteins involved in the nucleic acid sensory pathway of the vertebrate innate immune system and host evasion by viral pathogens. Previously, it has been demonstrated that ADAR1 (encoded by ADAR in humans) and DAI (also known as ZBP1) localize to cytoplasmic stress granules (SGs), and this localization is mediated by their Zα domains. To investigate the mechanism, we determined the interactions and localization pattern for the N-terminal region of human DAI (ZαßDAI), which harbours two Zα domains, and for a ZαßDAI mutant deficient in nucleic acid binding. Electrophoretic mobility shift assays demonstrated the ability of ZαßDAI to bind to hyperedited nucleic acids, which are enriched in SGs. Furthermore, using immunofluorescence and immunoprecipitation coupled with mass spectrometry, we identified several interacting partners of the ZαßDAI-RNA complex in vivo under conditions of arsenite-induced stress. These interactions are lost upon loss of nucleic acid-binding ability or upon RNase treatment. Thus, we posit that the mechanism for the translocation of Zα domain-containing proteins to SGs is mainly mediated by the nucleic acid-binding ability of their Zα domains. This article has an associated First Person interview with Bharath Srinivasan, joint first author of the paper.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Adenosina Desaminase/metabolismo , Grânulos Citoplasmáticos/metabolismo , Humanos , Conformação de Ácido Nucleico , RNA , Proteínas de Ligação a RNA
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200121, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866813

RESUMO

The cellular machinery that regulates gene expression can be self-propagated across cell division cycles and even generations. This renders gene expression states and their associated phenotypes heritable, independently of genetic changes. These phenotypic states, in turn, can be subject to selection and may influence evolutionary adaptation. In this review, we will discuss the molecular basis of epigenetic inheritance, the extent of its transmission and mechanisms of evolutionary adaptation. The current work shows that heritable gene expression can facilitate the process of adaptation through the increase of survival in a novel environment and by enlarging the size of beneficial mutational targets. Moreover, epigenetic control of gene expression enables stochastic switching between different phenotypes in populations that can potentially facilitate adaptation in rapidly fluctuating environments. Ecological studies of the variation of epigenetic markers (e.g. DNA methylation patterns) in wild populations show a potential contribution of this mode of inheritance to local adaptation in nature. However, the extent of the adaptive contribution of the naturally occurring variation in epi-alleles compared to genetic variation remains unclear. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Adaptação Biológica , Evolução Biológica , Epigênese Genética , Hereditariedade , Evolução Molecular
6.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443568

RESUMO

Human centromeres form primarily on α-satellite DNA but sporadically arise de novo at naive ectopic loci, creating neocentromeres. Centromere inheritance is driven primarily by chromatin containing the histone H3 variant CENP-A. Here, we report a chromosome engineering system for neocentromere formation in human cells and characterize the first experimentally induced human neocentromere at a naive locus. The spontaneously formed neocentromere spans a gene-poor 100-kb domain enriched in histone H3 lysine 9 trimethylated (H3K9me3). Long-read sequencing revealed this neocentromere was formed by purely epigenetic means and assembly of a functional kinetochore correlated with CENP-A seeding, eviction of H3K9me3 and local accumulation of mitotic cohesin and RNA polymerase II. At formation, the young neocentromere showed markedly reduced chromosomal passenger complex (CPC) occupancy and poor sister chromatin cohesion. However, long-term tracking revealed increased CPC assembly and low-level transcription providing evidence for centromere maturation over time.


Assuntos
Centrômero/metabolismo , Pareamento de Bases/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Genoma Humano , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Metilação , Domínios Proteicos , RNA Polimerase II/metabolismo , Transcrição Gênica , Coesinas
7.
Open Biol ; 10(10): 200227, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33081635

RESUMO

Pluripotent stem cells (PSCs) are central to development as they are the precursors of all cell types in the embryo. Therefore, maintaining a stable karyotype is essential, both for their physiological role as well as for their use in regenerative medicine. Karyotype abnormalities in PSCs in culture are common but the underlying causes remain unknown. To gain insight, we explore the composition of the centromere and kinetochore in human embryonic and induced PSCs. Centromere function depends on CENP-A nucleosome-defined chromatin. We show that while PSCs maintain abundant pools of CENP-A, CENP-C and CENP-T, these essential centromere components are strongly reduced at stem cell centromeres. Outer kinetochore recruitment is also impaired to a lesser extent, indicating an overall weaker kinetochore while the inner centromere protein Aurora B remains unaffected. We further show that, similar to differentiated human cells, CENP-A chromatin assembly in PSCs requires transition into G1 phase. Finally, reprogramming experiments indicate that reduction of centromeric CENP-A levels is an early event during dedifferentiation, coinciding with global chromatin remodelling. Our characterization of centromeres in human stem cells suggests a possible link between impaired centromere function and stem cell aneuploidies.


Assuntos
Reprogramação Celular/genética , Proteína Centromérica A/metabolismo , Cromatina/genética , Células-Tronco Pluripotentes/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Cromatina/metabolismo , Fibroblastos/metabolismo , Humanos , Cinetocoros/metabolismo , Mitose/genética , Modelos Biológicos , Células-Tronco Pluripotentes/citologia
8.
Mol Cell ; 80(3): 396-409.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108759

RESUMO

Cytokine activation of cells induces gene networks involved in inflammation and immunity. Transient gene activation can have a lasting effect even in the absence of ongoing transcription, known as long-term transcriptional memory. Here we explore the nature of the establishment and maintenance of interferon γ (IFNγ)-induced priming of human cells. We find that, although ongoing transcription and local chromatin signatures are short-lived, the IFNγ-primed state stably propagates through at least 14 cell division cycles. Single-cell analysis reveals that memory is manifested by an increased probability of primed cells to engage in target gene expression, correlating with the strength of initial gene activation. Further, we find that strongly memorized genes tend to reside in genomic clusters and that long-term memory of these genes is locally restricted by cohesin. We define the duration, stochastic nature, and molecular mechanisms of IFNγ-induced transcriptional memory, relevant to understanding enhanced innate immune signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Interferon gama/metabolismo , Ativação Transcricional/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/fisiologia , Regulação da Expressão Gênica/imunologia , Células HeLa , Humanos , Inflamação , Interferon gama/fisiologia , Ligação Proteica/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética , Ativação Transcricional/fisiologia , Coesinas
9.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931551

RESUMO

Chromosome segregation during cell division is driven by mitotic spindle attachment to the centromere region on each chromosome. Centromeres form a protein scaffold defined by chromatin featuring CENP-A, a conserved histone H3 variant, in a manner largely independent of local DNA cis elements. CENP-A nucleosomes fulfill two essential criteria to epigenetically identify the centromere. They undergo self-templated duplication to reestablish centromeric chromatin following DNA replication. More importantly, CENP-A incorporated into centromeric chromatin is stably transmitted through consecutive cell division cycles. CENP-A nucleosomes have unique structural properties and binding partners that potentially explain their long lifetime in vivo. However, rather than a static building block, centromeric chromatin is dynamically regulated throughout the cell cycle, indicating that CENP-A stability is also controlled by external factors. We discuss recent insights and identify the outstanding questions on how dynamic control of the long-term stability of CENP-A ensures epigenetic centromere inheritance.


Assuntos
Proteína Centromérica A/genética , Segregação de Cromossomos/genética , Replicação do DNA/genética , Epigênese Genética/genética , Autoantígenos/genética , Centrômero/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Histonas/genética , Humanos , Nucleossomos/genética , Fuso Acromático/genética
10.
Nat Commun ; 11(1): 2919, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522980

RESUMO

Replication and transcription of genomic DNA requires partial disassembly of nucleosomes to allow progression of polymerases. This presents both an opportunity to remodel the underlying chromatin and a danger of losing epigenetic information. Centromeric transcription is required for stable incorporation of the centromere-specific histone dCENP-A in M/G1 phase, which depends on the eviction of previously deposited H3/H3.3-placeholder nucleosomes. Here we demonstrate that the histone chaperone and transcription elongation factor Spt6 spatially and temporarily coincides with centromeric transcription and prevents the loss of old CENP-A nucleosomes in both Drosophila and human cells. Spt6 binds directly to dCENP-A and dCENP-A mutants carrying phosphomimetic residues alleviate this association. Retention of phosphomimetic dCENP-A mutants is reduced relative to wildtype, while non-phosphorylatable dCENP-A retention is increased and accumulates at the centromere. We conclude that Spt6 acts as a conserved CENP-A maintenance factor that ensures long-term stability of epigenetic centromere identity during transcription-mediated chromatin remodeling.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Proteína Centromérica A/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Drosophila , Proteínas de Drosophila/genética , Citometria de Fluxo , Imunofluorescência , Células HeLa , Humanos , Imunoprecipitação , Mitose/genética , Mitose/fisiologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Transcrição/genética
11.
Exp Cell Res ; 389(2): 111909, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32068000

RESUMO

The duplication and segregation of the genome during cell division is crucial to maintain cell identity, development of organisms and tissue maintenance. Centromeres are at the basis of accurate chromosome segregation as they define the site of assembly of the kinetochore, a large complex of proteins that attaches to spindle microtubules driving chromosome movement during cell division. Here we summarize nearly 40 years of research focussed on centromere specification and the role of local cis elements in creating a stable centromere. Initial discoveries in budding yeast in the 1980s opened up the field and revealed essential DNA sequence elements that define centromere position and function. Further work in humans discovered a centromeric DNA sequence-specific binding protein and centromeric α-satellite DNA was found to have the capacity to seed centromeres de novo. Despite the early indication of genetic elements as drivers of centromere specification, the discovery in the nineties of neocentromeres that form on unrelated DNA sequences, shifted the focus to epigenetic mechanisms. While specific sequence elements appeared non-essential, the histone H3 variant CENP-A was identified as a crucial component in centromere specification. Neocentromeres, occurring naturally or induced experimentally, have become an insightful tool to understand the mechanisms for centromere specification and will be the focus of this review. They have helped to define the strong epigenetic chromatin-based component underlying centromere inheritance but also provide new opportunities to understand the enigmatic, yet crucial role that DNA sequence elements play in centromere function and inheritance.


Assuntos
Autoantígenos , Centrômero/genética , Cromatina/genética , Segregação de Cromossomos , Epigênese Genética , Histonas/genética , Cinetocoros , Animais , Humanos
12.
Nat Commun ; 11(1): 501, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980633

RESUMO

Centromeres are defined by a self-propagating chromatin structure based on stable inheritance of CENP-A containing nucleosomes. Here, we present a genetic screen coupled to pulse-chase labeling that allow us to identify proteins selectively involved in deposition of nascent CENP-A or in long-term transmission of chromatin-bound CENP-A. These include factors with known roles in DNA replication, repair, chromatin modification, and transcription, revealing a broad set of chromatin regulators that impact on CENP-A dynamics. We further identify the SUMO-protease SENP6 as a key factor, not only controlling CENP-A stability but virtually the entire centromere and kinetochore. Loss of SENP6 results in hyper-SUMOylation of CENP-C and CENP-I but not CENP-A itself. SENP6 activity is required throughout the cell cycle, suggesting that a dynamic SUMO cycle underlies a continuous surveillance of the centromere complex that in turn ensures stable transmission of CENP-A chromatin.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Cisteína Endopeptidases/metabolismo , Testes Genéticos , Biocatálise , Ciclo Celular , Proteína Centromérica A/metabolismo , Genótipo , Células HeLa , Humanos , Cinetocoros/metabolismo , Subunidades Proteicas/metabolismo , Proteólise , Sumoilação
13.
Nat Ecol Evol ; 3(3): 491-498, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718851

RESUMO

Epigenetic, non-DNA sequence-based inheritance can potentially contribute to adaptation but, due to its transient nature and the difficulty involved in uncoupling it from genetic variation, it is unclear whether it has any effect on long-term evolution. However, short-term epigenetic inheritance may interact with genetic change by modifying the rate and type of adaptive mutations. Here, we test this notion in an experimental evolution set-up in yeast. We tune low, intermediate and high levels of heritable silencing of a URA3 reporter under selection by insertion at different positions within silent subtelomeric chromatin in otherwise isogenic Saccharomyces cerevisiae. Heritable silencing does not impact mutation rate but drives population size expansion and rapid epigenetic adaptation. This eventually leads to genetic assimilation of the silent phenotype by mutations that reduce or abolish URA3 expression. Moreover, at intermediate or low levels of heritable silencing we find that populations evolve more rapidly by accumulation of adaptive mutations, in part through acquisition of novel alleles that enhance gene silencing, aiding accelerated adaptation. We provide an experimental proof of concept that defines the impact and mechanisms of how short-term epigenetic inheritance can shape adaptive evolution.


Assuntos
Adaptação Biológica , Evolução Biológica , Inativação Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Methods Mol Biol ; 1832: 131-158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073525

RESUMO

Understanding chromatin dynamics is essential to define the contribution of chromatin to heritable gene silencing and the long-term maintenance of gene expression. Here we present a detailed protocol for time-ChIP, a novel method to measure histone turnover at high resolution across long timescales. This method is based on the SNAP-tag, a self-labeling enzyme that can be pulse labeled with small molecules in cells. Upon pulse biotinylation of a cohort of SNAP-tagged histones we can determine their abundance and fate across a chase period using a biotin-specific chromatin pulldown followed by DNA sequencing or quantitative PCR. This method is unique in its ability to trace the long-term fate of a chromatin bound histone pool, genome wide. In addition to a step by step protocol, we outline advantages and limitations of the method in relation to other existing techniques. time-ChIP can define regions of high and low histone turnover and identify the location of pools of long lived histones.


Assuntos
Imunoprecipitação da Cromatina/métodos , Loci Gênicos , Padrões de Herança/genética , Nucleossomos/metabolismo , Calibragem , DNA/isolamento & purificação , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Solubilidade , Fatores de Tempo
15.
Prog Mol Subcell Biol ; 56: 139-162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28840236

RESUMO

Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.


Assuntos
Ciclo Celular/fisiologia , Centrômero/metabolismo , Cromatina/metabolismo , Homeostase , Microscopia , Centrômero/genética , Proteína Centromérica A/metabolismo , Cromatina/genética
16.
Mol Cell ; 65(2): 231-246, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28017591

RESUMO

Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Autoantígenos/genética , Proteína Quinase CDC2 , Centrômero/genética , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Transfecção
17.
Science ; 348(6235): 699-703, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25954010

RESUMO

Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Centrômero/química , Centrômero/ultraestrutura , Proteína Centromérica A , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/química , DNA/metabolismo , Epigênese Genética , Transferência Ressonante de Energia de Fluorescência , Técnicas de Silenciamento de Genes , Humanos , Nucleossomos/química , Nucleossomos/ultraestrutura , Estrutura Secundária de Proteína
18.
Nat Cell Biol ; 15(9): 1056-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873148

RESUMO

The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.


Assuntos
Autoantígenos/genética , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Histonas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Adenoviridae/genética , Autoantígenos/metabolismo , Centrômero/ultraestrutura , Proteína Centromérica A , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Vetores Genéticos , Histonas/metabolismo , Humanos , Estrutura Terciária de Proteína , Retina/citologia , Retina/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
20.
Mol Biol Cell ; 24(7): 923-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23363600

RESUMO

Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle-restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle-restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fase G1 , Nucleossomos/metabolismo , Autoantígenos/genética , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Nucleossomos/genética , Estabilidade Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA