Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(10): 1942-1951, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37079728

RESUMO

AIMS: The article investigates whether chronic hyperglycaemia in Type 1 diabetes (T1D) is associated with a proinflammatory immune signature and with arterial wall inflammation, driving the development of atherosclerosis. METHODS AND RESULTS: Patients with T1D (n = 41), and healthy age-, sex-, and body mass index-matched controls (n = 20) were recruited. Arterial wall inflammation and haematopoietic activity were measured with 2'-deoxy-2'-(18F)-fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography. In addition, flow cytometry of circulating leucocytes was performed as well as targeted proteomics to measure circulating inflammatory markers. 18F-FDG uptake in the wall of the abdominal aorta, carotid arteries, and iliac arteries was higher in T1D compared with that in the healthy controls. Also, 18F-FDG uptake in the bone marrow and spleen was higher in patients with T1D. CCR2 and CD36 expressions on circulating monocytes were higher in patients with T1D, as well as several circulating inflammatory proteins. In addition, several circulating inflammatory markers (osteoprotegerin, transforming growth factor-alpha, CX3CL1, and colony-stimulating factor-1) displayed a positive correlation with FDG uptake. Within T1D, no differences were found between people with a high and low HbA1c. CONCLUSION: These findings strengthen the concept that chronic hyperglycaemia in T1D induces inflammatory changes that fuel arterial wall inflammation leading to atherosclerosis. The degree of hyperglycaemia appears to play a minor role in driving this inflammatory response in patients with T1D.


Assuntos
Arterite , Aterosclerose , Diabetes Mellitus Tipo 1 , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Arterite/metabolismo , Inflamação , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo
2.
J Clin Endocrinol Metab ; 108(8): 1909-1920, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36800223

RESUMO

CONTEXT: Type 1 diabetes (T1D) is associated with alterations of the immune response which persist even after the autoimmunity aspect is resolved. Clinical factors that cause dysregulation, however, are not fully understood. OBJECTIVE: To identify clinical factors that affect immune dysregulation in people with longstanding T1D. DESIGN: In this cross-sectional study, 243 participants with longstanding T1D were recruited between February 2016 and June 2017 at the Radboudumc, the Netherlands. Blood was drawn to determine immune cell phenotype and functionality, as well as circulating inflammatory proteome. Multivariate linear regression was used to determine the association between glycated hemoglobin (HbA1c) levels, duration of diabetes, insulin need, and diabetes complications with inflammation. RESULTS: HbA1c level is positively associated with circulating inflammatory markers (P < .05), but not with immune cell number and phenotype. Diabetes duration is associated with increased number of circulating immune cells (P < .05), inflammatory proteome (P < .05), and negatively associated with adaptive immune response against Mycobacterium tuberculosis and Rhizopus oryzae (P < .05). Diabetes nephropathy is associated with increased circulating immune cells (P < .05) and inflammatory markers (P < .05). CONCLUSION: Disease duration and chronic complications associate with persistent alterations in the immune response of individuals with long standing T1D.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/complicações , Hemoglobinas Glicadas , Estudos Transversais , Proteoma
3.
Immunometabolism (Cobham) ; 4(4): e00008, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337734

RESUMO

An increase in glucose uptake driving aerobic glycolysis is a robust hallmark of immune cell activation. The glycolytic response supports functional alterations of the innate immune cells including the production and release of cytokines. Large inter-individual differences in the magnitude of this cytokine response are known to exist. In addition, the presence of disease is known to impact on immune cell function. Whether variation in metabolic responses of immune cells exist between individuals during health or disease is currently unknown. Here, we explore inter-individual differences in the glycolytic rate of immune cells using lactate production as readout upon activation using a variety of different stimuli. Glycolytic responses are subsequently associated to functional immune cell responses in healthy humans. In addition, we determined the glycolytic rate of immune cells and its association with immune function using patients diagnosed with diabetes mellitus. Based on the relative increase in lactate production after activation, distinct clusters of low, intermediate, and high responders could be identified, illustrating the existence of variation in glycolytic responses in healthy subjects. Interestingly, the production of cytokines mirrored these high-, intermediate-, and low-lactate patterns after pathogenic stimulation. In patients with diabetes mellitus, a reduced correlation was found between lactate and cytokine production, specifically for IL-6. Furthermore, based on the relative increase in lactate production, variability in the glycolytic response was reduced compared to healthy subjects. In conclusion, our results show a specific association between the glycolytic rate and function in human immune cells after stimulation with different pathogens. In addition to demonstrating the existence of glycolytic variability and specificity depending on the type of stimulus, the association between glycolysis and function in innate immune cells is altered during the presence of diabetes.

4.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638288

RESUMO

Background: The large inter-individual variability in immune-cell composition and function determines immune responses in general and susceptibility o immune-mediated diseases in particular. While much has been learned about the genetic variants relevant for type 1 diabetes (T1D), the pathophysiological mechanisms through which these variations exert their effects remain unknown. Methods: Blood samples were collected from 243 patients with T1D of Dutch descent. We applied genetic association analysis on >200 immune-cell traits and >100 cytokine production profiles in response to stimuli measured to identify genetic determinants of immune function, and compared the results obtained in T1D to healthy controls. Results: Genetic variants that determine susceptibility to T1D significantly affect T cell composition. Specifically, the CCR5+ regulatory T cells associate with T1D through the CCR region, suggesting a shared genetic regulation. Genome-wide quantitative trait loci (QTLs) mapping analysis of immune traits revealed 15 genetic loci that influence immune responses in T1D, including 12 that have never been reported in healthy population studies, implying a disease-specific genetic regulation. Conclusions: This study provides new insights into the genetic factors that affect immunological responses in T1D. Funding: This work was supported by an ERC starting grant (no. 948207) and a Radboud University Medical Centre Hypatia grant (2018) to YL and an ERC advanced grant (no. 833247) and a Spinoza grant of the Netherlands Association for Scientific Research to MGN CT received funding from the Perspectief Biomarker Development Center Research Programme, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). AJ was funded by a grant from the European Foundation for the Study of Diabetes (EFSD/AZ Macrovascular Programme 2015). XC was supported by the China Scholarship Council (201706040081).


Every year around the world, over 100,000 people are diagnosed with type 1 diabetes. This disease develops when the immune system mistakenly destroys the cells that produce a hormone called insulin, leaving affected individuals unable to regulate their blood sugar levels. Type 1 diabetes patients must rely on regular injections of manufactured insulin to survive. The composition and activity of the human immune system is under genetic control, and people with certain changes in their genes are more susceptible than others to develop type 1 diabetes. Previous studies have identified around 60 locations in the human DNA (known as loci) associated with the condition, but it remains unclear how these loci influence the immune system and whether diabetes will emerge. Chu, Janssen, Koenen et al. explored how variations in genetic information can influence the composition of the immune system, and the type of molecules it releases to perform its role. To do so, blood samples from 243 individuals of Dutch descent with type 1 diabetes were collected, and genetic associations were investigated. The results revealed that a major type of immune actors known as T cells are under the control of genetic factors associated with type 1 diabetes susceptibility. For instance, a specific type of T cells showed shared genetic control with type 1 diabetes. In addition, 15 loci were identified that influenced immune responses in the patients. Among those, 12 have never been reported to be involved in immune responses in healthy people, implying that these regions might only regulate the immune system of individuals with type 1 diabetes and other similar disorders. Finally, Chu, Janssen, Koenen et al. propose 11 genes within the identified loci as potential targets for new diabetes medication. These results represent an important resource for researchers exploring the genetic and immune basis of type 1 diabetes, and they could open new avenues for drug development.


Assuntos
Diabetes Mellitus Tipo 1 , China , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Fenótipo , Locos de Características Quantitativas
5.
Metabolism ; 121: 154795, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971203

RESUMO

AIMS: Patients with diabetes have a higher incidence of infections with Candida albicans, Staphylococcus aureus and Mycobacterium tuberculosis, yet factors contributing to this increased risk are largely unknown. We hypothesize that altered innate and adaptive immune responses during diabetes contribute to an increased susceptibility to infections. MATERIALS AND METHODS: We studied cytokine responses to ex vivo pathogenic stimulations in a cohort with type 1 diabetes (n = 243) and non-diabetic healthy control subjects (n = 56) using isolated peripheral blood mononuclear cells (PBMCs). Clinical phenotypical data including BMI, duration of diabetes, and HbA1c levels were collected and related to the cytokine production capacity. RESULTS: Adjusted for age, sex and BMI, the presence of diabetes was associated with significantly lower IL-1ß, IL-6, TNF-α, and IL-17 production upon ex vivo stimulation of PBMCs with C. albicans and S. aureus (all, p < 0.05). In response to stimulation with M. tuberculosis only IL-17 (p < 0.001) was lower in patients with diabetes. Patients with the shortest diabetes duration had a significant lower IL-1ß, IL-6 and TNF-α production (all, p < 0.01) after M. tuberculosis stimulation. Older patients had a significant lower IFN-γ (p < 0.05) production after stimulation with all three pathogens. HbA1c levels and BMI had no significant impact on cytokine production. CONCLUSIONS: PBMCs of patients with type 1 diabetes demonstrate significantly lower cytokine production in response to stimulation with several pathogens, which likely explain, at least in part, the increased susceptibility for these infections.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Infecções/etiologia , Imunidade Adaptativa/fisiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Controle Glicêmico/estatística & dados numéricos , Humanos , Imunidade Inata/fisiologia , Lactente , Recém-Nascido , Infecções/epidemiologia , Infecções/imunologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Fatores de Risco , Adulto Jovem
6.
Diabetes ; 69(12): 2735-2746, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978233

RESUMO

Diabetes is associated with increased cardiovascular risk and higher occurrence of infections. These complications suggest altered responses of the innate immune system. Recent studies have shown that energy metabolism of monocytes is crucial in determining their functionality. Here we investigate whether monocyte metabolism and function are changed in patients with diabetes and aim to identify diabetes-associated factors driving these alterations. Patients with type 1 diabetes (T1D) (n = 41) and healthy age-, sex-, and BMI-matched control subjects (n = 20) were recruited. Monocytes were isolated from peripheral blood to determine immune functionality, metabolic responses, and transcriptome profiles. Upon ex vivo stimulation with Toll-like receptor (TLR) 4 or TLR-2 agonists, monocytes of patients with T1D secreted lower levels of various cytokines and showed lower glycolytic rates compared with monocytes isolated from matched control subjects. Stratification based on HbA1c levels revealed that lower cytokine secretion was coupled to higher glycolytic rate of monocytes in patients with a higher glycemic burden. Circulating monocytes displayed an enhanced inflammatory gene expression profile associated with high glycemic burden. These results suggest that a high glycemic burden in patients with T1D is related to expression of inflammatory genes of monocytes and is associated with an impaired relationship between metabolism and inflammatory function upon activation.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1/metabolismo , Monócitos/metabolismo , Adulto , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 1/genética , Feminino , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino
7.
Diabetes Obes Metab ; 22(12): 2427-2436, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33462962

RESUMO

AIM: To investigate whether a history of severe hypoglycaemia (SH) or the associated presence of impaired awareness of hypoglycaemia (IAH) is characterized by a pro-inflammatory profile in people with type 1 diabetes. RESEARCH DESIGN AND METHODS: We measured circulating inflammatory markers and pro- and anti-inflammatory cytokine production after ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) in a well-characterized cohort of individuals with type 1 diabetes (n = 239) and in people without diabetes (n = 56). Data were corrected for confounders by using multivariate linear regression models. RESULTS: People with type 1 diabetes had higher circulating concentrations of high-sensitivity C-reactive protein (hs-CRP; 0.91 [0.36-2.25] vs. 0.52 [0.20-0.98] pg/mL, P < 0.001 and interleukin-18-binding protein (IL-18BP; 1746 [1304-2112] vs. 1381 [1191-1807] pg/mL; P = 0.001) than those without diabetes. In multivariate analysis, only higher hs-CRP concentrations persisted. Neither circulating immune cells nor ex vivo cytokine levels produced by PBMCs in response to an extensive panel of stimuli differed in groups defined by awareness state or a history of SH, apart from elevated IL-18BP in people with, versus those without, history of SH (1524 [1227-1903] vs. 1913 [1459-2408] pg/mL; P < 0.001). CONCLUSIONS: IAH or history of SH in people with type 1 diabetes was not associated with altered inflammatory profiles, arguing against chronically elevated inflammatory activity mediating the increased cardiovascular risk associated with hypoglycaemia. The finding of higher circulating concentrations of IL-18BP in individuals with a history of SH requires further investigation.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Conscientização , Estudos de Coortes , Diabetes Mellitus Tipo 1/complicações , Humanos , Hipoglicemia/induzido quimicamente , Leucócitos Mononucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA