Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Plant Sci ; 14: 1277617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900765

RESUMO

The action of the petunia strigolactone (SL) hormone receptor DAD2 is dependent not only on its interaction with the PhMAX2A and PhD53A proteins, but also on its expression patterns within the plant. Previously, in a yeast-2-hybrid system, we showed that a series of a single and double amino acid mutants of DAD2 had altered interactions with these binding partners. In this study, we tested the mutants in two plant systems, Arabidopsis and petunia. Testing in Arabidopsis was enabled by creating a CRISPR-Cas9 knockout mutant of the Arabidopsis strigolactone receptor (AtD14). We produced SL receptor activity in both systems using wild type and mutant genes; however, the mutants had functions largely indistinguishable from those of the wild type. The expression of the wild type DAD2 from the CaMV 35S promoter in dad2 petunia produced plants neither quite like the dad2 mutant nor the V26 wild type. These plants had greater height and leaf size although branch number and the plant shape remained more like those of the mutant. These traits may be valuable in the context of a restricted area growing system such as controlled environment agriculture.

2.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945593

RESUMO

Cross-regulation between hormone signaling pathways is indispensable for plant growth and development. However, the molecular mechanisms by which multiple hormones interact and co-ordinate activity need to be understood. Here, we generated a cross-regulation network explaining how hormone signals are integrated from multiple pathways in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. To do so we comprehensively characterized transcription factor activity during plant hormone responses and reconstructed dynamic transcriptional regulatory models for six hormones; abscisic acid, brassinosteroid, ethylene, jasmonic acid, salicylic acid and strigolactone/karrikin. These models incorporated target data for hundreds of transcription factors and thousands of protein-protein interactions. Each hormone recruited different combinations of transcription factors, a subset of which were shared between hormones. Hub target genes existed within hormone transcriptional networks, exhibiting transcription factor activity themselves. In addition, a group of MITOGEN-ACTIVATED PROTEIN KINASES (MPKs) were identified as potential key points of cross-regulation between multiple hormones. Accordingly, the loss of function of one of these (MPK6) disrupted the global proteome, phosphoproteome and transcriptome during hormone responses. Lastly, we determined that all hormones drive substantial alternative splicing that has distinct effects on the transcriptome compared with differential gene expression, acting in early hormone responses. These results provide a comprehensive understanding of the common features of plant transcriptional regulatory pathways and how cross-regulation between hormones acts upon gene expression.

3.
Methods Mol Biol ; 2309: 233-243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028691

RESUMO

Differential scanning fluorimetry (DSF) is a method used for assessing the interaction of ligands with proteins. In most cases binding of a ligand to proteins tends to increase the melting temperature (Tm) of the protein involved. However, in the case of strigolactone receptors (e.g., D14, AtD14, DAD2, RMS3) from plants, the Tm tends to be reduced in the presence of strigolactones. This is likely due to increased flexibility of the receptors in the presence of hormone ligands.DSF experiments are simple, fast, amenable to high-throughput formats, and cost effective. They have therefore gained in popularity, including within the field of SL signaling. Typically in DSF the receptor protein is purified and incubated with the ligand (strigolactone, agonist, or antagonist) and a (fluorescent) reporter dye. The mixture is then placed in a quantitative PCR instrument and subjected to an increasing temperature gradient. Changes in fluorescence are recorded along the gradient, as the dye interacts with unfolded portions of the protein becoming accessible when the protein "melts". Differences in the temperature at which the protein unfolds in the absence and in the presence of the ligand are interpreted as indicating interactions between the ligand and the receptor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fluorometria , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Receptores de Superfície Celular/metabolismo , Corantes Fluorescentes/metabolismo , Ensaios de Triagem em Larga Escala , Ligantes , Transdução de Sinais
4.
Plant Physiol ; 187(3): 1033-1044, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616657

RESUMO

The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Magnoliopsida/genética , Reguladores de Crescimento de Plantas/metabolismo , Plasticidade Celular , Magnoliopsida/crescimento & desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
5.
J Biol Chem ; 295(13): 4181-4193, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071083

RESUMO

Strigolactones (SLs) are terpenoid-derived plant hormones that regulate various developmental processes, particularly shoot branching, root development, and leaf senescence. The SL receptor has an unusual mode of action. Upon binding SL, it hydrolyzes the hormone, and then covalently binds one of the hydrolytic products. These initial events enable the SL receptor DAD2 (in petunia) to interact with the F-box protein PhMAX2A of the Skp-Cullin-F-box (SCF) complex and/or a repressor of SL signaling, PhD53A. However, it remains unclear how binding and hydrolysis structurally alters the SL receptor to enable its engagement with signaling partners. Here, we used mutagenesis to alter DAD2 and affect SL hydrolysis or DAD2's ability to interact with its signaling partners. We identified three DAD2 variants whose hydrolytic activity had been separated from the receptor's interactions with PhMAX2A or PhD53A. Two variants, DAD2N242I and DAD2F135A, having substitutions in the core α/ß hydrolase-fold domain and the hairpin, exhibited hormone-independent interactions with PhMAX2A and PhD53A, respectively. Conversely, the DAD2D166A variant could not interact with PhMAX2A in the presence of SL, but its interaction with PhD53A remained unaffected. Structural analyses of DAD2N242I and DAD2D166A revealed only small differences compared with the structure of the WT receptor. Results of molecular dynamics simulations of the DAD2N242I structure suggested that increased flexibility is a likely cause for its SL-independent interaction with PhMAX2A. Our results suggest that PhMAX2A and PhD53A have distinct binding sites on the SL receptor and that its flexibility is a major determinant of its interactions with these two downstream regulators.


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Lactonas/química , Petunia/química , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/química , Proteínas F-Box/química , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/genética , Hidrolases/química , Hidrolases/genética , Petunia/genética , Reguladores de Crescimento de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica/genética , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais/genética
6.
J Biol Chem ; 293(17): 6530-6543, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29523686

RESUMO

The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N-phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Modelos Moleculares , Oryza , Petunia , Receptores de Superfície Celular , ortoaminobenzoatos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Oryza/química , Oryza/genética , Oryza/metabolismo , Petunia/química , Petunia/genética , Petunia/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
7.
J Exp Bot ; 69(9): 2379-2390, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29190381

RESUMO

Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.


Assuntos
Dioxigenases/genética , Lactonas/metabolismo , Malus/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Malus/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética
8.
Nature ; 536(7617): 402-4, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27479322
9.
Plant Physiol ; 168(2): 735-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911529

RESUMO

Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.


Assuntos
Meio Ambiente , Morfogênese , Petunia/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Dados de Sequência Molecular , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Petunia/efeitos dos fármacos , Petunia/genética , Petunia/efeitos da radiação , Fósforo/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/efeitos da radiação , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/metabolismo
10.
Curr Opin Plant Biol ; 17: 28-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24507491

RESUMO

Axillary meristems are formed in leaf axils and their growth into branches is a highly controlled process that is an important contributor to plant architecture. Here we discuss work that improves our understanding of the initiation and growth of axillary meristems. Recent results have implicated brassinosteroid signalling in the formation of axillary meristems. Our knowledge of axillary meristem outgrowth has also advanced, particularly in the areas of strigolactone signal production and perception, which have been shown to respond to environmental inputs. Auxins and cytokinins have also been linked to the control of axillary shoot development, revealing a complex network of signals that combine to regulate the outgrowth of an axillary meristem into a branch.


Assuntos
Meristema/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lactonas/metabolismo , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo
11.
Curr Biol ; 22(21): 2032-6, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22959345

RESUMO

Strigolactones are a recently discovered class of plant hormone involved in branching, leaf senescence, root development, and plant-microbe interactions. They are carotenoid-derived lactones, synthesized in the roots and transported acropetally to modulate axillary bud outgrowth (i.e., branching). However, a receptor for strigolactones has not been identified. We have identified the DAD2 gene from petunia, an ortholog of the rice and Arabidopsis D14 genes, and present evidence for its roles in strigolactone perception and signaling. DAD2 acts in the strigolactone pathway, and the dad2 mutant is insensitive to the strigolactone analog GR24. The crystal structure of DAD2 reveals an α/ß hydrolase fold containing a canonical catalytic triad with a large internal cavity capable of accommodating strigolactones. In the presence of GR24 DAD2 interacts with PhMAX2A, a central component of strigolactone signaling, in a GR24 concentration-dependent manner. DAD2 can hydrolyze GR24, with mutants of the catalytic triad abolishing both this activity and the ability of DAD2 to interact with PhMAX2A. The hydrolysis products can neither stimulate the protein-protein interaction nor modulate branching. These observations suggest that DAD2 acts to bind the mobile strigolactone signal and then interacts with PhMAX2A during catalysis to initiate an SCF-mediated signal transduction pathway.


Assuntos
Hidrolases/metabolismo , Petunia/crescimento & desenvolvimento , Petunia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Regulação da Expressão Gênica de Plantas , Hidrolases/química , Hidrolases/genética , Lactonas/metabolismo , Lactonas/farmacologia , Dados de Sequência Molecular , Petunia/genética , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/embriologia , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais
12.
Front Plant Sci ; 3: 296, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23293648

RESUMO

The signaling molecules strigolactone (SL) and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves, and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2) and closely related α/ß hydrolase fold proteins (DAD2 and KAI2). The crystal structure of DAD2 has been solved revealing an α/ß hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyze hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2, and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF (Skp-Cullin-F-box) complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/ß hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that DAD2 and KAI2 represent an intermediate stage where some catalytic activity is retained at the same time as a receptor role has evolved.

13.
New Phytol ; 188(3): 803-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20659299

RESUMO

• CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes have been demonstrated to play an integral role in the control of branch development in model plants, including Arabidopsis, pea (Pisum sativum), petunia (Petunia hybrida) and rice (Oryza sativa). • Actinidia chinensis is a woody perennial plant grown for commercial production of kiwifruit. CCD7 and CCD8 genes were isolated from A. chinensis and these genes are predominantly expressed in the roots of kiwifruit. AcCCD7 and AcCCD8 were able to complement the corresponding Arabidopsis mutants max3 and max4. The function of AcCCD8 in branch development was determined in transgenic kiwifruit plants containing an RNAi construct for AcCCD8. • Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence. • The CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.


Assuntos
Actinidia , Arabidopsis/metabolismo , Senescência Celular , Dioxigenases/metabolismo , Genes de Plantas , Folhas de Planta/fisiologia , Caules de Planta , Actinidia/enzimologia , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Dioxigenases/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA
14.
Plant Signal Behav ; 5(4): 422-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20118665

RESUMO

Plants regulate the development of branches in response to environmental and developmental signals in order to maximize reproductive success. A number of hormone signals are involved in the regulation of branching and both their production and transmission affect axillary meristem outgrowth. With the identification of strigolactones as root-derived branch inhibitors it seems likely that a biochemical pathway starting from a carotenoid and resulting in production of a strigolactone hormone is present in most plants. Our observation that loss of CCD7 or CCD8 also results in production of a promoter of branching from roots shows the branching pathway has multiple levels of control which allows a high degree of sensitivity to subtle differences in environmental and developmental signals.

15.
Plant Physiol ; 151(4): 1867-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19846541

RESUMO

One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.


Assuntos
Morfogênese , Petunia/enzimologia , Petunia/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Transdução de Sinais , Biomassa , Segregação de Cromossomos/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Tamanho do Órgão , Especificidade de Órgãos , Petunia/genética , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/enzimologia , Caules de Planta/genética , Interferência de RNA , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Exp Bot ; 60(13): 3835-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19651683

RESUMO

Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.


Assuntos
Actinidia/efeitos dos fármacos , Actinidia/genética , Cianamida/farmacologia , Ativação Transcricional/efeitos dos fármacos , Actinidia/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Genomics ; 9: 351, 2008 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-18655731

RESUMO

BACKGROUND: Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). RESULTS: The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. CONCLUSION: This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.


Assuntos
Actinidia/genética , Actinidia/fisiologia , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Paladar , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Adulto , Alérgenos/genética , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Criança , Códon , Sequência Consenso , Ésteres/metabolismo , Frutas/genética , Frutas/metabolismo , Genes de Plantas/genética , Marcadores Genéticos , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Polimorfismo de Nucleotídeo Único , Ácido Quínico/metabolismo , Análise de Sequência , Terpenos/metabolismo
18.
BMC Plant Biol ; 8: 16, 2008 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-18279528

RESUMO

BACKGROUND: Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS: Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION: Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Malus/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Amido/metabolismo , Fatores de Tempo
19.
Plant Physiol ; 144(4): 1899-912, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17556515

RESUMO

Ethylene is the major effector of ripening in many fleshy fruits. In apples (Malus x domestica) the addition of ethylene causes a climacteric burst of respiration, an increase in aroma, and softening of the flesh. We have generated a transgenic line of 'Royal Gala' apple that produces no detectable levels of ethylene using antisense ACC OXIDASE, resulting in apples with no ethylene-induced ripening attributes. In response to external ethylene these antisense fruits undergo a normal climacteric burst and produced increasing concentrations of ester, polypropanoid, and terpene volatile compounds over an 8-d period. A total of 186 candidate genes that might be involved in the production of these compounds were mined from expressed sequence tags databases and full sequence obtained. Expression patterns of 179 of these were assessed using a 15,720 oligonucleotide apple microarray. Based on sequence similarity and gene expression patterns we identified 17 candidate genes that are likely to be ethylene control points for aroma production in apple. While many of the biosynthetic steps in these pathways were represented by gene families containing two or more genes, expression patterns revealed that only a single member is typically regulated by ethylene. Only certain points within the aroma biosynthesis pathways were regulated by ethylene. Often the first step, and in all pathways the last steps, contained enzymes that were ethylene regulated. This analysis suggests that the initial and final enzymatic steps with the biosynthetic pathways are important transcriptional regulation points for aroma production in apple.


Assuntos
Vias Biossintéticas/fisiologia , Etilenos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Odorantes , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Malus/genética , Família Multigênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Volatilização
20.
Plant Physiol ; 143(2): 697-706, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17158589

RESUMO

Control of branch development is a major determinant of architecture in plants. Branching in petunia (Petunia hybrida) is controlled by the DECREASED APICAL DOMINANCE (DAD) genes. Gene functions were investigated by plant grafting, morphology studies, double-mutant characterization, and gene expression analysis. Both dad1-1 and dad3 increased branching mutants can be reverted to a near-wild-type phenotype by grafting to a wild-type or a dad2 mutant root stock, indicating that both genes affect the production of a graft-transmissible substance that controls branching. Expression of the DAD1 gene in the stems of grafted plants, detected by quantitative reverse transcription-polymerase chain reaction correlates with the branching phenotype of the plants. The dad2-1 mutant cannot be reverted by grafting, indicating that this gene acts predominantly in the shoot of the plant. Double-mutant analysis indicates that the DAD2 gene acts in the same pathway as the DAD1 and DAD3 genes because the dad1-1dad2-1 and dad2-1dad3 double mutants are indistinguishable from the dad2-1 mutant. However, the dad1-1dad3 double mutant has an additive phenotype, with decreased height of the plants, delayed flowering, and reduced germination rates compared to the single mutants. This result, together with the observation that the dad1-1 and dad3 mutants cannot be reverted by grafting to each other, suggests that the DAD1 and DAD3 genes act in the same pathway, but not in a simple stepwise fashion.


Assuntos
Genes de Plantas/genética , Petunia/crescimento & desenvolvimento , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Petunia/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA