Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bioresour Technol ; 407: 131137, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043278

RESUMO

Klebsiella oxytoca KP001-TF60 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflBΔtdcDΔpmd) was re-engineered to direct more carbon flux towards succinate production with less acetate. Glucose uptake, cell growth, and carbon distribution were restricted by alterations in relative expressions and nucleotide sequences of genes associated with PEP and pyruvate metabolisms. Transcripts of pck, ppc, and frd genes were up-regulated for enhancing NADH reoxidation during succinate production while increased pyk and tdcE transcripts were observed due to maintenance of acetyl-CoA through the oxidative branch of TCA cycle. Based on whole-genome sequencing, several genes in sugars-specific PTS (ptsG, bglF, chbR, fruA, mtlR, and treY), ABC transporters (alsK, and rbsK), Major Facilitator Superfamily (uhpB and setB), and catabolite repression (cyaA and csrB) were found to be mutated. The strain produced succinate yield up to 0.89 g/g (∼80 % theoretical maximum) with acetate < 1 g/L, and may be one of the succinate producers applied in an industrial-production scale with simplified purification processes.


Assuntos
Klebsiella oxytoca , Engenharia Metabólica , Ácido Succínico , Klebsiella oxytoca/metabolismo , Klebsiella oxytoca/genética , Ácido Succínico/metabolismo , Engenharia Metabólica/métodos , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Acetatos/metabolismo , Glucose/metabolismo , Ciclo do Carbono
2.
Bioresour Technol ; 407: 131145, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043279

RESUMO

Sugarcane bagasse (SCB) was utilized for efficiently producing optically pure D-(-)-lactate by Klebsiella oxytoca KIS004-91T strain. Cellulase (15 U/g NaOH-treated SCB) sufficiently liberated high sugars with saccharifications of 79.8 % cellulose and 52.5 % hemicellulose. For separated hydrolysis and fermentation, D-(-)-lactate was produced at 53.5 ± 2.1 g/L (0.98 ± 0.01 g/g sugar utilized or 0.71 ± 0.01 g/g total sugars) while D-(-)-lactate at 47.2 ± 1.8 g/L (0.78 ± 0.03 g/g sugar used or 0.69 ± 0.01 g/g total sugars) was obtained under simultaneous saccharification and fermentation (SSF). D-(-)-lactate at 99.9 ± 0.9 g/L (0.97 ± 0.01 g/g sugar utilized or 0.78 ± 0.01 g/g total sugars) was improved via fed-batch SSF. Based on mass balance, raw SCB of 7 kg is required to produce 1 kg D-(-)-lactate. Unlike others, D-(-)-lactate production was performed in low-cost salt medium without requirements of rich nutrients. Costs regarding medium, purification, and waste disposal may be reduced. This unlocks economic capability of SCB bioconversion or agricultural and agro-industrial wastes into high valuable D-(-)-lactate.


Assuntos
Celulose , Fermentação , Klebsiella oxytoca , Ácido Láctico , Saccharum , Klebsiella oxytoca/metabolismo , Celulose/metabolismo , Hidrólise , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Biotecnologia/métodos
3.
Foods ; 13(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38998655

RESUMO

In this study, a newly isolated Pediococcus acidilactici F3 was used as probiotic starter for producing fermented soymilk to enhance antioxidant properties with high antimicrobial activity against food-borne pathogens. The objectives of this study were to investigate optimized fermentation parameters of soymilk for enhancing antioxidant property by P. acidilactici F3 and to assess the dynamic antimicrobial activity of the fermented soymilk during co-culturing against candidate food-borne pathogens. Based on central composite design (CCD) methodology, the maximum predicted percentage of antioxidant activity was 78.9% DPPH inhibition. After model validation by a 2D contour plot, more suitable optimum parameters were adjusted to be 2% (v/v) inoculum and 2.5 g/L glucose incubated at 30 °C for 18 h. These parameters could provide the comparable maximum percentage of antioxidant activity at 74.5 ± 1.2% DPPH inhibition, which was up to a 23% increase compared to that of non-fermented soymilk. During 20 days of storage at 4 °C, antioxidant activities and viable cells of the fermented soymilk were stable while phenolic and organic contents were slightly increased. Interestingly, the fermented soymilk completely inhibited food-borne pathogens, Salmonella Typhimurium ATCC 13311, and Escherichia coli ATCC 25922 during the co-culture incubation. Results showed that the soymilk fermented by P. acidilactici F3 may be one of the alternative functional foods enriched in probiotics, and the antioxidation and antimicrobial activities may retain nutritional values and provide health benefits to consumers with high confidence.

4.
Bioresour Technol ; 393: 130045, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006983

RESUMO

Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.


Assuntos
Engenharia Metabólica , Ácido Succínico , Ácido Succínico/metabolismo , Escherichia coli/metabolismo , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405435

RESUMO

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Assuntos
Kluyveromyces , Ácido Láctico , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Desidrogenase/metabolismo , Glucose , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Concentração de Íons de Hidrogênio , Fermentação
6.
Chembiochem ; 23(11): e202200071, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35362650

RESUMO

ß-Nicotinamide mononucleotide (NMN) has recently gained attention for a nutritional supplement because it is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+ ). In this study, we developed NMN synthesis by coupling two modules. The first module is to culture E. coli MG1655 ▵tktA ▵tktB ▵ptsG to metabolize xylose to generate D-ribose in the medium. The supernatant containing D-ribose was applied in the second module which is composed of EcRbsK-EcPRPS-CpNAMPT reaction to synthesize NMN, that requires additional enzymes of CHU0107 and EcPPase to remove feedback inhibitors ADP and pyrophosphate. The second module can be rapidly optimized by comparing NMN production determined by the cyanide assay. Finally, 10 mL optimal biocascade reaction generated NMN with a good yield of 84 % from 1 mM D-ribose supplied from the supernatant of E. coli MG1655 ▵tktA ▵tktB ▵ptsG. Our results can further guide researchers to metabolically engineer E. coli for NMN synthesis.


Assuntos
Mononucleotídeo de Nicotinamida , Xilose , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nucleotídeos/metabolismo , Ribose , Xilose/metabolismo
7.
Appl Microbiol Biotechnol ; 106(8): 2937-2951, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416488

RESUMO

Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS:  â€¢ gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.


Assuntos
Escherichia coli , Glicerol , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Deleção de Genes , Glicerol/metabolismo , Propilenoglicol/metabolismo , Propilenoglicóis/metabolismo , Amido/metabolismo
8.
Appl Microbiol Biotechnol ; 104(22): 9565-9579, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33009939

RESUMO

In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD+. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.


Assuntos
Klebsiella oxytoca , Engenharia Metabólica , Meios de Cultura , Fermentação , Klebsiella oxytoca/genética , Ácido Láctico , Nutrientes
9.
Bioresour Technol ; 273: 93-102, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419446

RESUMO

This work demonstrated a pioneer work in the pre-treatment of rice straw by phosphoric acid (H3PO4) for succinate production. The optimized pre-treatment condition of rice straw was at 121 °C for 30 min with 2 N H3PO4. With this condition, total sugar concentration of 31.2 g/L with the highest hemicellulose saccharification yield of 94% was obtained. The physicochemical analysis of the pre-treated rice straw showed significant changes in its structure thus enhancing enzymatic saccharification. Succinate concentrations of 78.5 and 63.8 g/L were produced from hydrolysate liquor (L) and solid fraction (S) of the pre-treated rice straw respectively, with a comparable yield of 86% by E. coli AS1600a. Use of a combined L + S fraction in simultaneous saccharification and fermentation (LS + SSF) further improved succinate production at a concentration and yield of 85.6 g/L and 90% respectively. The results suggested that H3PO4 pre-treated rice straw may be utilized for economical succinate production by E. coli AS1600a.


Assuntos
Escherichia coli/metabolismo , Oryza/metabolismo , Ácido Succínico/metabolismo , Ácidos , Fermentação , Hidrólise , Técnicas de Diluição do Indicador
10.
Bioresour Technol ; 260: 348-356, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29649727

RESUMO

Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, ß-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ±â€¯0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ±â€¯0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ±â€¯0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ±â€¯0.4 g/L and 1.37 ±â€¯0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale.


Assuntos
Fermentação , Hidróxido de Sódio , Ácido Succínico , Celulase , Escherichia coli , Etanol , Hidrólise , Oryza
11.
Appl Microbiol Biotechnol ; 102(1): 127-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29079860

RESUMO

Escherichia coli KJ122 was previously engineered to produce high concentration and yield of succinate in mineral salt medium containing glucose and sucrose under anaerobic conditions. However, this strain does not efficiently utilize xylose. To improve the xylose uptake and utilization in the strain KJ122, xylFGH and xylE genes were individually and simultaneously deleted. E. coli KJ12201 (KJ122::ΔxylFGH) exhibited superior abilities in growth, xylose consumption, and succinate production compared to those of the parental strain KJ122. However, E. coli KJ12202 (KJ122::ΔxylE) lessened xylose consumption due to an ATP deficit for metabolizing xylose thus making succinate production from xylose not preferable. Moreover, E. coli KJ12203 (KJ122::ΔxylFGHΔxylE) exhibited an impaired growth on xylose due to lacking of xylose transporters. After performing metabolic evolution, the evolved KJ12201-14T strain exhibited a great improvement in succinate production from pure xylose with higher concentration and productivity about 18 and 21%, respectively, compared to KJ12201 strain. During fed-batch fermentation, KJ12201-14T also produced succinate from xylose at a concentration, yield, and overall productivity of 84.6 ± 0.7 g/L, 0.86 ± 0.01 g/g and 1.01 ± 0.01 g/L/h, respectively. KJ12201 and KJ12201-14T strains co-utilized glucose/xylose mixture without catabolite repression. Both strains produced succinate from glucose/xylose mixture at concentration, yield, and overall and specific productivities of about 85 g/L, 0.85 g/g, 0.70 g/L/h, and 0.44 g/gCDW/h, respectively. Based on our results, KJ12201 and KJ12201-14T strains exhibited a greater performance in succinate production from xylose containing medium than those of other published works. They would be potential strains for the economic bio-based succinate production from xylose.


Assuntos
Meios de Cultura/química , Dissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Succinatos/metabolismo , Xilose/metabolismo , Anaerobiose , Reatores Biológicos , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Fermentação/efeitos dos fármacos , Engenharia Metabólica/métodos , Minerais/metabolismo , Minerais/farmacologia , Proteínas/genética , Succinatos/análise , Simportadores/deficiência , Simportadores/genética
12.
FEMS Microbiol Lett ; 364(17)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911187

RESUMO

In this study, Bifidobacterium animalis subsp. lactis BF052 was demonstrated the growth capability in soymilk and could be thus supplemented as a probiotic starter that employed soymilk as one of its food vehicles. The complete genome sequence of BF052 was therefore determined to understand the genetic basis of BF052 as a technological and functional probiotic starter. The whole genome sequence of BF052 consists of a circular genome of 1938 624 bp with a G+C content of 60.50%. This research highlights relevant genes involving in its adaptive responses to industrial and/or environmental stresses and utilization of α-galacto-oligosaccharides in BF052 strain compared with other representative bifidobacterial genomes.


Assuntos
Bifidobacterium animalis/metabolismo , Manipulação de Alimentos , Genoma Bacteriano , Probióticos , Leite de Soja , Estresse Fisiológico , Composição de Bases , Bifidobacterium animalis/genética , DNA Bacteriano/química , Fermentação , Oligossacarídeos/metabolismo , Análise de Sequência de DNA
13.
PLoS One ; 11(9): e0161503, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27603922

RESUMO

An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h.


Assuntos
Butileno Glicóis/metabolismo , Klebsiella oxytoca/metabolismo , Engenharia Metabólica , Reatores Biológicos , Butileno Glicóis/química , Fermentação , Klebsiella oxytoca/genética , Polissacarídeos/química
14.
Bioprocess Biosyst Eng ; 39(11): 1775-84, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27438372

RESUMO

Rice straw (RS) may serve as a low-cost biomass for the production of biofuels and biochemicals, but its native structure is resistant to enzymatic and microbial deconstruction. Therefore, an efficient pre-treatment method is required to modify crystalline cellulose to a more reactive amorphous form. This work investigated pre-treatments of rice straw involving size reduction (S) followed by either sodium hydroxide (NaOH) or diluted sulfuric acid (H2SO4) and liquid hot water (LHW). The shrinkage of the vascular bundles in the rice straw structure pre-treated with NaOH-LHW-S was higher than that with LHW-S and H2SO4-LHW-S pre-treatments. The highest levels of total fermentative products and residual sugars were obtained at the concentrations of 7.8 ± 0.2 and 2.1 ± 0.3 g/L, respectively, after fermentation by Clostridium cellulolyticum for NaOH-LHW-S pre-treated rice straw at 121 °C for 120 min. Overall, the combined physicochemical pre-treatment of RS led to improved microbial hydrolysis during cellulose degradation at the percentage of 85.5 ± 0.5.


Assuntos
Celulose/química , Clostridium cellulolyticum/crescimento & desenvolvimento , Oryza/química , Hidróxido de Sódio/química , Ácidos Sulfúricos/química , Temperatura Alta , Hidrólise
15.
PLoS One ; 11(6): e0157958, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333286

RESUMO

The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications.


Assuntos
Bifidobacterium animalis/fisiologia , Alimentos , Trato Gastrointestinal/microbiologia , Viabilidade Microbiana , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Bifidobacterium animalis/citologia , Bifidobacterium animalis/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Liofilização , Trato Gastrointestinal/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lactente , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pancreatina/farmacologia , Probióticos/metabolismo
16.
Bioresour Technol ; 193: 433-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159300

RESUMO

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain now ferments 10% xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% xylose. Clones from this population all exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26 ± 1.37 g/L succinate, equivalent to that produced by the parent (KJ122) from 10% glucose (85.46 ± 1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). This mutation was shown to be responsible for the improvement in fermentation using KJΔgalP as the host and expression vectors with native galP and with mutant galP(∗). Strain AS1600a and KJΔgalP(pLOI5746; galP(∗)) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate using mineral salts medium.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Carboidratos/química , Escherichia coli/metabolismo , Fermentação , Engenharia Genética/métodos , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Proteínas Periplásmicas de Ligação/genética , Ácido Succínico/metabolismo , Celulose/metabolismo , Escherichia coli/genética , Genes Bacterianos , Glucose/metabolismo , Hidrólise , Lignina/metabolismo , Saccharum/química , Xilose/metabolismo
17.
Metab Eng ; 30: 16-26, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895450

RESUMO

Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed.


Assuntos
Butileno Glicóis/metabolismo , Meios de Cultura/química , Deleção de Genes , Genes Bacterianos , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Engenharia Metabólica/métodos , Acetato Quinase/genética , Álcool Desidrogenase/genética , Proteínas de Bactérias/genética , L-Lactato Desidrogenase/genética
18.
Bioprocess Biosyst Eng ; 38(1): 175-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25030337

RESUMO

A metabolically engineered Escherichia coli KJ122 was efficiently utilized for succinate production from cassava pulp during batch separate hydrolysis and fermentation (SHF) under simple anaerobic conditions. Succinate concentration of 41.46 ± 0.05 g/L with yield and productivity of 82.33 ± 0.14 g/100 g dry pulp and 0.84 ± 0.02 g/L/h was obtained. In batch simultaneous saccharification and fermentation (SSF), hydrolysis of 12 % (w/v) cassava pulp with an enzyme loading of 2 % AMG + 3 % Cel (v/w) at pH 6.5 was optimized at 39 °C. Succinate concentration of 80.86 ± 0.49 g/L with a yield of 70.34 ± 0.37 g/100 g dry pulp and a productivity of 0.84 ± 0.01 g/L/h was attained using E. coli KJ122. Fed-batch SSF significantly enhanced succinate concentration to 98.63 ± 0.12 g/L at yield and productivity of 71.64 ± 0.97 g/100 g dry pulp and 1.03 ± 0.01 g/L/h. This result indicated an efficient and economical succinate production from cassava pulp using SHF and SSF by the use of E. coli KJ122.


Assuntos
Escherichia coli/metabolismo , Manihot/metabolismo , Ácido Succínico/metabolismo , Biomassa , Reatores Biológicos , Fermentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
19.
Bioresour Technol ; 119: 191-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22728200

RESUMO

Klebsiella oxytoca strains were constructed to produce optical pure d-lactate by pH-controlled batch fermentation in mineral salts medium. The alcohol dehydrogenase gene, adhE, and the phospho-transacetylase/acetate kinase A genes, pta-ackA, were deleted from the wild type. KMS002 (ΔadhE) and KMS004 (ΔadhE Δpta-ackA) exhibited d-lactate production as a primary pathway for the regeneration of NAD(+). Both strains produced 11-13 g/L of d-lactate in medium containing 2% (w/v) glucose with yields of 0.64-0.71 g/g glucose used. In sugarcane molasses, KMS002 and KMS004 produced 22-24 g/L of d-lactate with yields of 0.80-0.87 g/g total sugars utilized. Both strains also utilized maltodextrin derived from cassava starch and produced d-lactate at a concentration of 33-34 g/L with yields of 0.91-0.92 g/g maltodextrin utilized. These d-lactate yields are higher than those reported for engineered E. coli strains.


Assuntos
Acetato Quinase/genética , Álcool Desidrogenase/genética , Klebsiella oxytoca/fisiologia , Ácido Láctico/biossíntese , Engenharia Metabólica/métodos , Polissacarídeos/metabolismo , Sacarose/metabolismo , Inativação Gênica , Ácido Láctico/química , Ácido Láctico/isolamento & purificação , Minerais/metabolismo , Sais/metabolismo
20.
Bioresour Technol ; 103(1): 329-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22023966

RESUMO

Sucrose-utilizing genes (cscKB and cscA) from Escherichia coli KO11 were cloned and expressed in a metabolically engineered E. coli KJ122 to enhance succinate production from sucrose. KJ122 harboring a recombinant plasmid, pKJSUC, was screened for the efficient sucrose utilization by growth-based selection and adaptation. KJ122-pKJSUC-24T efficiently utilized sucrose in a low-cost medium to produce high succinate concentration with less accumulation of by-products. Succinate concentrations of 51 g/L (productivity equal to 1.05 g/L/h) were produced from sucrose in anaerobic bottles, and concentrations of 47 g/L were produced in 10L bioreactor within 48 h. Antibiotics had no effect on the succinate production by KJ122-pKJSUC-24T. In addition, succinate concentrations of 62 g/L were produced from sugarcane molasses in anaerobic bottles, and concentrations of 56 g/L in 10 L bioreactor within 72 h. These results demonstrated that KJ122-pKJSUC-24T would be a potential strain for bio-based succinate production from sucrose and sugarcane molasses.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Melaço , Saccharum/química , Ácido Succínico/metabolismo , Sacarose/metabolismo , Anaerobiose/efeitos dos fármacos , Biocatálise/efeitos dos fármacos , Reatores Biológicos/microbiologia , Meios de Cultura/farmacologia , Escherichia coli/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Frutose/metabolismo , Glucose/metabolismo , Plasmídeos/genética , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA