Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 347: 199432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969014

RESUMO

The Stimulator of Interferon Genes (STING) is involved in cytosolic DNA sensing and type I Interferons (IFN-I) induction. Aiming to identify new STING agonists with antiviral activity and given the known biological activity of benzothiazole and benzimidazole derivatives, a series of benzofuran derivatives were tested for their ability to act as STING agonists, induce IFN-I and inhibit viral replication. Compounds were firstly evaluated in a gene reporter assay measuring luciferase activity driven by the human IFN-ß promoter in cells expressing exogenous STING (HEK293T). Seven of them were able to induce IFN-ß transcription while no induction of the IFN promoter was observed in the presence of a mutated and inactive STING, showing specific protein-ligand interaction. Docking studies were performed to predict their putative binding mode. The best hit compounds were then tested on human coronavirus 229E replication in BEAS-2B and MRC-5 cells and three derivatives showed EC50 values in the µM range. Such compounds were also tested on SARS-CoV-2 replication in BEAS-2B cells and in Calu-3 showing they can inhibit SARS-CoV-2 replication at nanomolar concentrations. To further confirm their IFN-dependent antiviral activity, compounds were tested to verify their effect on phospho-IRF3 nuclear localization, that was found to be induced by benzofuran derivatives, and SARS-CoV-2 replication in Vero E6 cells, lacking IFN production, founding them to be inactive. In conclusion, we identified benzofurans as STING-dependent immunostimulatory compounds and host-targeting inhibitors of coronaviruses representing a novel chemical scaffold for the development of broad-spectrum antivirals.


Assuntos
Antivirais , Benzofuranos , Proteínas de Membrana , Replicação Viral , Humanos , Benzofuranos/farmacologia , Benzofuranos/química , Antivirais/farmacologia , Antivirais/química , Replicação Viral/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células HEK293 , SARS-CoV-2/efeitos dos fármacos , Animais , Simulação de Acoplamento Molecular , Interferon beta/genética , Linhagem Celular , Chlorocebus aethiops , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA