Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1281056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942322

RESUMO

Pesticides are compounds known to cause immunetoxicity in exposed individuals, which have a potential to substantially modify the prognosis of pathologies dependent on an efficient immune response, such as breast cancer. In this context, we examined the circulating cytokine profile of Th1/Th2/Th17 patterns in women occupationally exposed to pesticides and their correlation with worse prognostic outcomes. Peripheral blood samples were collected from 187 rural working women with breast cancer, occupationally exposed or not to pesticides, to quantify the levels of cytokines IL-1ß, IL-12, IL-4, IL-17-A, and TNF -α. Data on the disease profile and clinical outcomes were collected through medical follow-up. IL-12 was reduced in exposed women with tumors larger than 2 cm and in those with lymph node metastases. Significantly reduced levels of IL-17A were observed in exposed patients with Luminal B subtype tumors, with high ki67 proliferation rates, high histological grade, and positive for the progesterone receptor. Reduced IL-4 was also seen in exposed women with lymph node invasion. Our data show that occupational exposure to pesticides induces significant changes in the levels of cytokines necessary for tumor control and correlates with poor prognosis clinical outcomes in breast cancer.


Assuntos
Neoplasias da Mama , Exposição Ocupacional , Praguicidas , Humanos , Feminino , Citocinas , Neoplasias da Mama/patologia , Praguicidas/efeitos adversos , Interleucina-4 , Fator de Necrose Tumoral alfa , Interleucina-12 , Exposição Ocupacional/efeitos adversos
2.
Cancers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358618

RESUMO

Breast cancer risk stratification is a strategy based using on clinical parameters to predict patients' risk of recurrence or death, categorized as low, intermediate, or high risk. Both low and high risk are based on well-defined clinical parameters. However, the intermediate risk depends on more malleable parameters. It means an increased possibility for either suboptimal treatment, leading to disease recurrence, or systemic damage due to drug overload toxicity. Therefore, identifying new factors that help to characterize better the intermediate-risk stratification, such as environmental exposures, is necessary. For this purpose, we evaluated the impact of occupational exposure to pesticides on the systemic profile of cytokines (IL-12, IL-4, IL-17A, and TNF-α) and oxidative stress (hydroperoxides, total antioxidants, and nitric oxide metabolites), as well as TGF-ß1, CTLA-4, CD8, and CD4 expression, investigated in tumor cells. Occupational exposure to pesticides decreased the levels of IL-12 and significantly increased the expression of TGF-ß1 and CTLA-4 in the immune infiltrate. Nevertheless, we observed a decrease in CTLA-4 in tumor samples and CD8 in infiltrating cells of intermediate overweight or obese patients with at least one metastatic lymph node at the diagnosis. These findings indicate that occupational exposure to pesticides changes the molecular behavior of disease and should be considered for intermediate-risk stratification assessment in breast cancer patients.

4.
Front Oncol ; 12: 904813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875117

RESUMO

Homologous recombination is a crucial pathway that is specialized in repairing double-strand breaks; thus, alterations in genes of this pathway may lead to loss of genomic stability and cell growth suppression. Pesticide exposure potentially increases cancer risk through several mechanisms, such as the genotoxicity caused by chronic exposure, leading to gene alteration. To analyze this hypothesis, we investigated if breast cancer patients exposed to pesticides present a different mutational pattern in genes related to homologous recombination (BRCA1, BRCA2, PALB2, and RAD51D) and damage-response (TP53) concerning unexposed patients. We performed multiplex PCR-based assays and next-generation sequencing (NGS) of all coding regions and flanking splicing sites of BRCA1, BRCA2, PALB2, TP53, and RAD51D in 158 unpaired tumor samples from breast cancer patients on MiSeq (Illumina) platform. We found that exposed patients had tumors with more pathogenic and likely pathogenic variants than unexposed patients (p = 0.017). In general, tumors that harbored a pathogenic or likely pathogenic variant had a higher mutational burden (p < 0.001). We also observed that breast cancer patients exposed to pesticides had a higher mutational burden when diagnosed before 50 years old (p = 0.00978) and/or when carrying BRCA1 (p = 0.0138), BRCA2 (p = 0.0366), and/or PALB2 (p = 0.00058) variants, a result not found in the unexposed group. Our results show that pesticide exposure impacts the tumor mutational landscape and could be associated with the carcinogenesis process, therapy response, and disease progression. Further studies should increase the observation period in exposed patients to better evaluate the impact of these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA