Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 154: 106537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588632

RESUMO

The Advanced System for Implant Stability Testing (ASIST) is a device currently being developed to noninvasively measure implant stability by estimating the mechanical stiffness of the bone-implant interface, which is reported as the ASIST Stability Coefficient (ASC). This study's purpose was to determine whether changes in density, bonding, and drilling technique affect the measured vibration of a dental implant, and whether they can be quantified as a change in the estimated BII stiffness. Stability was also measured using RFA, insertion torque (IT) and the pullout test. Bone-level tapered implants (4.1 mm diameter, 10 mm length) were inserted in polyurethane foam as an artificial bone substitute. Samples were prepared using different bone densities (20, 30, 40 PCF), drilling sequences, and superglue to simulate a bonded implant. Measurements were compared across groups at a significance level of 0.05. The ASC was able to indicate changes in each factor as a change in the interfacial stiffness. IT and pullout force values also showed comparable increases. Furthermore, the relative difference in ISQ values between experimental groups was considerably smaller than the ASC. While future work should be done using biological bone and in-vivo systems, the results of this in-vitro study suggest that modelling of the implant system with a vibration-based approach may provide a noninvasive method of assessing the mechanical stability of the implant.


Assuntos
Substitutos Ósseos , Implantes Dentários , Vibração , Osso e Ossos , Densidade Óssea , Torque
2.
J Mech Behav Biomed Mater ; 150: 106238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992584

RESUMO

A non-invasive method of quantitatively assessing dental implant stability is important to monitor its long-term health. The Advanced System for Implant Stability Testing (ASIST) is a noninvasive technique that couples the impact technique with a linear vibration model of the implant system, such that the measured signal can be used to determine a matching analytical response. The purpose of this study was to evaluate the ASIST technique by comparing stability estimates obtained from artificial implant installations with various abutments. Two Straumann dental implants were installed in four densities of uniform polyurethane foam, and the stability of each installation was measured using different healing abutments and artificial dental crowns. With the ASIST, values for the estimated interfacial stiffness increased with foam density and did not significantly change with abutment type for a specific sample. This provides evidence that the analytical model is representative of the physical system. Current methods, such as resonance frequency analysis, interpret the interface stiffness based on a single frequency measurement. With the ASIST, the measured signal provides information about the first and second modes of vibration of the implant system, both of which are influenced by the properties of the corresponding abutment. The consideration of both modes allows the technique to reliably measure the interfacial stiffness independently of the system components. As a result, the ASIST technique may provide an improved non-invasive method of measuring the stability of dental implants.


Assuntos
Implantes Dentários , Vibração , Teste de Materiais , Titânio , Análise do Estresse Dentário
3.
Ann Biomed Eng ; 51(9): 2001-2012, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37129781

RESUMO

Osteochondral allograft transplantations are typically used to treat focal articular cartilage injuries where the damaged cartilage is replaced with fresh cadaveric donor grafts. Despite the notable success rate of this procedure, it is limited by fresh donor tissue availability which can only be stored for approximately 28 days after harvest. Vitrification, a form of cryopreservation, can extend the storage time of cartilage. Although it has shown to preserve chondrocyte viability, its effect on the mechanical properties of the tissue has not been thoroughly investigated. Therefore, in this study, the mechanical properties of fresh, frozen, and vitrified articular cartilage were evaluated through unconfined compression testing. Results showed that the peak modulus, equilibrium modulus, and relaxation time constants of the vitrified and control samples (tested one day after harvest) were similar and higher than the fresh (tested 21 days after harvest) and frozen samples. This demonstrated that vitrification does not adversely affect the mechanical properties of cartilage and can be used as an alternative to fresh allografts which are limited by storage time. The fresh samples also had inferior mechanical properties compared to the control samples suggesting that vitrified allografts could potentially improve clinical outcomes in addition to increasing donor tissue availability.


Assuntos
Cartilagem Articular , Humanos , Condrócitos , Congelamento , Criopreservação , Transplante Homólogo
4.
Int J Pharm ; 593: 120121, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278492

RESUMO

Protection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying. The addition of leucine (20% w/w), pullulan (10%, 20% w/w), and trileucine (3%, 6% w/w) as dispersibility enhancers was investigated with trehalose as a stabilizing agent. Particle morphology and solid state, nanoemulsion droplet size, squalene and GLA content, ID93 presence, and aerosol performance were assessed for each formulation. The results showed that the addition of leucine improved aerosol performance, but increased aggregation of the emulsion droplets was demonstrated on reconstitution. Addition of pullulan preserved emulsion droplet size; however, the antigen could not be detected after reconstitution. The trehalose-trileucine excipient formulations successfully stabilized the adjuvant system, with evidence indicating retention of the antigen, in an inhalable dry powder format suitable for lung delivery.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Adjuvantes Imunológicos , Administração por Inalação , Aerossóis , Excipientes , Humanos , Tamanho da Partícula , Pós
5.
Int J Oral Maxillofac Implants ; 34(3): e21­e31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30892284

RESUMO

PURPOSE: This study investigated the effect of implant length, diameter, and surface contact on the stresses developed in a fibular free flap. MATERIALS AND METHODS: Finite element (FE) models for dental implants placed in a patient-specific fibula were created using a patient-specific fibula CT scan and geometry files of commercially available dental implants. The FE models involved nine dental implants of different lengths and diameters: 3.5, 4.3, and 5.0 mm in diameter and 10.0, 11.5, and 13.0 mm in length. Three contact conditions between the implant and the fibular flap were investigated: complete fusion, friction, and smooth contact, representing complete osseointegration, a rough implant-bone interface, and no osseointegration, respectively. Finite element analysis was performed to examine the average von Mises stresses around the local implant-fibula interface within the fibula under a load of 500 N along the long axis of the implant and posterior-anterior and lateral-medial directions. RESULTS: Both the level of osseointegration and implant size had noticeable effects on the mechanical stress inside the fibula. The stress introduced to the fibula gradually decreased as the implant osseointegrated into the bone. An optimal implant size existed where the internal stresses were minimized; this trend was seen when investigating both the implant diameter and length. In this study, an implant with a diameter of 4.3 mm and length of 10 mm produced the lowest mechanical stresses overall. CONCLUSION: Both implant length and diameter were influential; stresses were seen to decrease to a minimum then subsequently increase as either dimension increased. Additionally, stresses in bone introduced by an implant decreased as the degree of interaction between the implant and fibula increased. Complete fusion between the implant and bone yielded the lowest stresses.


Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Simulação por Computador , Implantes Dentários , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Fíbula , Análise de Elementos Finitos , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA