Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39272835

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.

2.
J Cancer Res Clin Oncol ; 150(8): 390, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154308

RESUMO

OBJECTIVES: Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS: Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS: In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION: Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.


Assuntos
Apoptose , Artemisininas , Movimento Celular , Cisplatino , Progressão da Doença , Leucoplasia Oral , Neoplasias Bucais , Artemisininas/farmacologia , Animais , Leucoplasia Oral/patologia , Leucoplasia Oral/tratamento farmacológico , Humanos , Cisplatino/farmacologia , Camundongos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proteína HMGB1/metabolismo , Antineoplásicos/farmacologia
3.
BMC Complement Med Ther ; 22(1): 39, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139827

RESUMO

BACKGROUND: Recurrence and resistance of Candida spp. infections is associated with the ability of these microorganisms to present several virulence patterns such as morphogenesis, adhesion, and biofilm formation. In the search for agents with antivirulence activity, essential oils could represent a strategy to act against biofilms and to potentiate antifungal drugs. OBJECTIVE: To evaluate the antivirulence effect of Origanum vulgare L. essential oil (O-EO) against Candida spp. and to potentiate the effect of fluconazole and nystatin. METHODS: The effect of O-EO was evaluated on ATCC reference strains of C. albicans and non-albicans Candida species. Minimum inhibitory concentration (MIC) was determined through broth microdilution assay. Adhesion to microplates was determined by crystal violet (CV) assay. An adapted scratch assay in 24-well was used to determine the effect of essential oil on biofilms proliferation. Viability of biofilms was evaluated by MTT reduction assay and through a checkerboard assay we determined if O-EO could act synergistically with fluconazole and nystatin. RESULTS: MIC for C. albicans ATCC-90029 and ATCC-10231 was 0.01 mg/L and 0.97 mg/L, respectively. For non-albicans Candida strains MIC values were 2.6 mg/L for C. dubliniensis ATCC-CD36 and 5.3 mg/L for C. krusei ATCC-6258. By using these concentrations, O-EO inhibited morphogenesis, adhesion, and proliferation at least by 50% for the strains assayed. In formed biofilms O-EO decreased viability in ATCC 90029 and ATCC 10231 strains (IC50 7.4 and 2.8 mg/L respectively). Finally, we show that O-EO interacted synergistically with fluconazole and nystatin. CONCLUSIONS: This study demonstrate that O-EO could be considered to improve the antifungal treatment against Candida spp.


Assuntos
Óleos Voláteis , Origanum , Candida , Fluconazol/farmacologia , Nistatina/farmacologia , Óleos Voláteis/farmacologia , Virulência
4.
Toxicol In Vitro ; 65: 104814, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32112803

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is a critical health issue worldwide. The high rate of liver and lung metastasis associated with CRC creates a significant barrier to effective and efficient therapy. Tumour cells, including CRC cells, have metabolic alterations, such as high levels of glycolytic activity, increased cell proliferation and invasiveness, and chemo- and radio-resistance. However, the abnormally elevated mitochondrial transmembrane potential of these cells also provides an opportunity to develop drugs that selectively target the mitochondrial functions of tumour cells. METHODS: In this work, we used a new batch of benzoic acid esters with cytotoxic activities attached to the triphenylphosphonium group as a vehicle to target tumour mitochondria and improve their activity. We evaluated the cytotoxicity, selectivity, and mechanism of action of these derivatives, including the effects on energy stress-induced apoptosis and metabolic behaviour in the human CRC cell lines HCT-15 and COLO-205. RESULTS: The benzoic acid derivatives selectively targeted the tumour cells with high potency and efficacy. The derivatives induced the uncoupling of the oxidative phosphorylation system, decreased the transmembrane potential, and reduced ATP levels while increasing AMPK activation, thereby triggering tumour cell apoptosis in both tumour cell lines tested. CONCLUSION: The benzoic acid derivatives studied here are promising candidates for assessing in vivo models of CRC, despite the diverse metabolic characteristics of these tumour cells.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Compostos Organofosforados/farmacologia , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA