Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochimie ; 169: 69-87, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786231

RESUMO

Lipid droplets are fat storage organelles present in most eukaryotic cells. They consist of a neutral lipid core containing mostly triglycerides and sterol esters and covered by a monolayer of phospholipids, wherein numerous proteins are embedded. In the cell, lipid droplets have a dynamic life cycle, rapidly altering their size, location, lipid and protein composition in response to environmental stimuli and cell state. Lipid droplets are primarily involved in the coordination of lipid metabolism with cellular requirements for energy production, membrane homeostasis and cell growth. However, they are also directly or indirectly engaged in signalling pathways. On the one hand, lipid droplets sequester lipids and proteins thereby limiting their availability for participation in signalling pathways. On the other hand, the lipolytic machinery provides a highly regulated, on-demand source of signalling lipids: lipids derived from their neutral lipid core, or the phospholipid monolayer, directly act as signalling mediators or are converted into ones. In fact, emerging studies suggest that these organelles are essential for various cellular stress response mechanisms, including inflammation and immunity, acting as hubs that integrate metabolic and inflammatory processes. Here, we discuss the ways in which lipid droplets regulate the availability of fatty acids for the activation of signalling pathways and for the production of polyunsaturated fatty acid-derived lipid mediators. We focus in particular on recent discoveries in immune cells and adipose tissue that have revealed an intricate relationship between lipid droplets and inflammatory signalling and may also be relevant for other tissues and various human diseases.


Assuntos
Tecido Adiposo/metabolismo , Eicosanoides/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo/imunologia , Animais , Ácidos Docosa-Hexaenoicos/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/imunologia , Regulação da Expressão Gênica , Homeostase/genética , Homeostase/imunologia , Humanos , Inflamação , Lipase/genética , Lipase/imunologia , Gotículas Lipídicas/imunologia , Metabolismo dos Lipídeos/imunologia , Fosfolipases/genética , Fosfolipases/imunologia , Fosfolipídeos/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Triglicerídeos/imunologia
2.
Yale J Biol Med ; 92(3): 435-452, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31543707

RESUMO

Lipid droplets are cytosolic fat storage organelles present in most eukaryotic cells. Long regarded merely as inert fat reservoirs, they are now emerging as major regulators of cellular metabolism. They act as hubs that coordinate the pathways of lipid uptake, distribution, storage, and use in the cell. Recent studies have revealed that they are also essential components of the cellular stress response. One of the hallmark characteristics of lipid droplets is their capacity to buffer excess lipids and to finely tune their subsequent release based on specific cellular requirements. This simple feature of lipid droplet biology, buffering and delayed release of lipids, forms the basis for their pleiotropic roles in the cellular stress response. In stressed cells, lipid droplets maintain energy and redox homeostasis and protect against lipotoxicity by sequestering toxic lipids into their neutral lipid core. Their mobility and dynamic interactions with mitochondria enable an efficient delivery of fatty acids for optimal energy production. Lipid droplets are also involved in the maintenance of membrane and organelle homeostasis by regulating membrane composition, preventing lipid peroxidation and removing damaged proteins and lipids. Finally, they also engage in a symbiotic relationship with autophagy and act as reservoirs of bioactive lipids that regulate inflammation and immunity. Thus, lipid droplets are central managers of lipid metabolism that function as safeguards against various types of cellular stress.


Assuntos
Gotículas Lipídicas/metabolismo , Estresse Fisiológico , Animais , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Lipídeos/toxicidade , Organelas/efeitos dos fármacos , Organelas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
3.
Appl Microbiol Biotechnol ; 102(23): 10103-10117, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191288

RESUMO

Lactic acid bacteria (LAB) are attractive hosts for the expression of heterologous proteins and can be engineered to deliver therapeutic proteins or peptides to mucosal surfaces. The gastric stable pentadecapeptide BPC-157 is able to prevent and treat gastrointestinal inflammation by reducing the production of reactive oxygen species (ROS). In this study, we used LAB Lactococcus lactis as a vector to deliver BPC-157 by surface display and trypsin shedding or by secretion to the growth medium. Surface display of BPC-157 was achieved by fusing it with basic membrane protein A (BmpA) or with the peptidoglycan binding domain of AcmA and Usp45 secretion signal. While the expression of BmpA-fusion proteins was higher than that of AcmA/Usp45-fusion protein, the surface display ability of BPC-157 was approximately 14-fold higher with AcmA/Usp45-fusion protein. Release of BPC-157 from the bacterial surface or from isolated fusion proteins by trypsinization was demonstrated with anti-BPC-157 antibodies or by mass spectrometry. The concentration of BPC-157 delivered by surface display via AcmA/Usp45-fusion was 30 ng/ml. This increased to 117 ng/ml by Usp45 signal-mediated secretion, making the latter the most effective lactococcal delivery approach for BPC-157. Secreted BPC-157 significantly decreased ROS production in 149BR fibroblast cell model, suggesting its potential benefit in the treatment of intestinal inflammations. Additionally, a comparison of different modes of small peptide delivery by L. lactis, performed in the present study, will facilitate the future use of L. lactis as peptide delivery vehicle.


Assuntos
Sistemas de Liberação de Medicamentos , Lactococcus lactis , Fragmentos de Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Doenças Inflamatórias Intestinais/terapia , Microrganismos Geneticamente Modificados , Estresse Oxidativo , Fragmentos de Peptídeos/farmacologia , Plasmídeos , Engenharia de Proteínas , Proteínas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Molecules ; 23(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081476

RESUMO

Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.


Assuntos
Gorduras/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias/metabolismo , Animais , Autofagia , Proliferação de Células , Sobrevivência Celular , Homeostase , Humanos , Lipase/metabolismo , Metabolismo dos Lipídeos , Lipólise , Neoplasias/patologia , Estresse Oxidativo
5.
Data Brief ; 18: 234-240, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896513

RESUMO

The data presented here is related to the research article entitled "Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress" by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018) 247-265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG) and phosphatidylcholine (PC) composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3). Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL) and by exogenous addition of secreted phospholipase A2 (sPLA2) in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress.

6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 247-265, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29229414

RESUMO

Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A2 (hGX sPLA2) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA2-induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions.


Assuntos
Neoplasias da Mama/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Gotículas Lipídicas/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-6/genética , Feminino , Humanos , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/patologia , Proteínas de Neoplasias/genética , Fosfolipases A2 Secretórias/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
7.
Acta Chim Slov ; 64(3): 549-554, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28862289

RESUMO

Cytosolic lipid droplets (LDs) store excess fatty acids (FAs) in the form of neutral lipids and prevent starvation-induced cancer cell death. Here we studied the ability of mono- and polyunsaturated FAs to affect LD formation and survival in HeLa cervical cancer cells. We found that the LD content in HeLa cells increases with cell density, but it decreases in MDA-MB-231 breast cancer cells. Exogenously-added unsaturated FAs, including oleic (OA), linoleic (LA), arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) displayed a similar ability to alter LD formation in HeLa cells. There was a dual, concentration-dependent effect on neutral lipid accumulation: low micromolar concentrations of LA, AA and DHA reduced, while all FAs induced LD formation at higher concentrations. In serum starved He-La cells, OA stimulated LD formation, but, contrary to expectations, it promoted cell death. Our results reveal a link between cell population density and LD formation in HeLa cells and show that unsaturated FAs may both suppress or stimulate LD formation. This dynamic regulation of LD content must be accounted for when studying the effects of lipids and lipid metabolism-targeting drugs on LD metabolism in HeLa cells.


Assuntos
Ácidos Graxos Insaturados , Células HeLa , Gotículas Lipídicas , Neoplasias do Colo do Útero/química , Contagem de Células , Ácidos Graxos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA