Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Host Microbe ; 32(6): 925-944.e10, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754417

RESUMO

Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial ß-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.


Assuntos
Microbioma Gastrointestinal , Glucuronidase , Homeostase , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Glucuronidase/metabolismo , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Glucuronídeos/metabolismo , Humanos , Intestinos/microbiologia , Masculino , Vida Livre de Germes
2.
Sci Adv ; 9(18): eadg3390, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146137

RESUMO

Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human ß-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Periodontais , Periodontite , Humanos , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Periodontais/etiologia , Periodontite/microbiologia , Inibidores Enzimáticos/farmacologia
3.
Drug Metab Dispos ; 51(4): 427-435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623880

RESUMO

Testosterone exhibits high variability in pharmacokinetics and glucuronidation after oral administration. Although testosterone metabolism has been studied for decades, the impact of UGT2B17 gene deletion and the role of gut bacterial ß-glucuronidases on its disposition are not well characterized. We first performed an exploratory study to investigate the effect of UGT2B17 gene deletion on the global liver proteome, which revealed significant increases in proteins from multiple biological pathways. The most upregulated liver proteins were aldoketoreductases [AKR1D1, AKR1C4, AKR7A3, AKR1A1, and 7-dehydrocholesterol reductase (DHCR7)] and alcohol or aldehyde dehydrogenases (ADH6, ADH1C, ALDH1A1, ALDH9A1, and ALDH5A). In vitro assays revealed that AKR1D1 and AKR1C4 inactivate testosterone to 5ß-dihydrotestosterone (5ß-DHT) and 3α,5ß-tetrahydrotestosterone (3α,5ß-THT), respectively. These metabolites also appeared in human hepatocytes treated with testosterone and in human serum collected after oral testosterone dosing in men. Our data also suggest that 5ß-DHT and 3α, 5ß-THT are then eliminated through glucuronidation by UGT2B7 in UGT2B17 deletion individuals. Second, we evaluated the potential reactivation of testosterone glucuronide (TG) after its secretion into the intestinal lumen. Incubation of TG with purified gut microbial ß-glucuronidase enzymes and with human fecal extracts confirmed testosterone reactivation into testosterone by gut bacterial enzymes. Both testosterone metabolic switching and variable testosterone activation by gut microbial enzymes are important mechanisms for explaining the disposition of orally administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions. SIGNIFICANCE STATEMENT: This study investigated the association of UGT2B17 gene deletion and gut bacterial ß-glucuronidases with testosterone disposition in vitro. The experiments revealed upregulation of AKR1D1 and AKR1C4 in UGT2B17 deletion individuals, and the role of these enzymes to inactivate testosterone to 5ß-dihydrotestosterone and 3α, 5ß-tetrahydrotestosterone, respectively. Key gut bacterial species responsible for testosterone glucuronide activation were identified. These data are important for explaining the disposition of exogenously administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.


Assuntos
Di-Hidrotestosterona , Glucuronidase , Masculino , Humanos , Di-Hidrotestosterona/metabolismo , Testosterona/metabolismo , Fígado/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo
4.
Nat Commun ; 13(1): 136, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013263

RESUMO

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Carcinógenos/antagonistas & inibidores , Colite/prevenção & controle , Neoplasias Colorretais/prevenção & controle , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Triclosan/antagonistas & inibidores , Animais , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/toxicidade , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Colite/induzido quimicamente , Colite/enzimologia , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosan/química , Triclosan/metabolismo , Triclosan/toxicidade
5.
Drug Metab Dispos ; 49(8): 683-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074730

RESUMO

The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by ß-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Eliminação Hepatobiliar , Inativação Metabólica/efeitos dos fármacos , Irinotecano , Transportadores de Ânions Orgânicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glucuronidase/metabolismo , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Humanos , Irinotecano/análogos & derivados , Irinotecano/farmacocinética , Irinotecano/toxicidade , Fígado/enzimologia , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/toxicidade
6.
Nat Biotechnol ; 39(3): 347-356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077962

RESUMO

RNA-protein interaction networks govern many biological processes but are difficult to examine comprehensively. We devised ribonucleoprotein networks analyzed by mutational profiling (RNP-MaP), a live-cell chemical probing strategy that maps cooperative interactions among multiple proteins bound to single RNA molecules at nucleotide resolution. RNP-MaP uses a hetero-bifunctional crosslinker to freeze interacting proteins in place on RNA and then maps multiple bound proteins on single RNA strands by read-through reverse transcription and DNA sequencing. RNP-MaP revealed that RNase P and RMRP, two sequence-divergent but structurally related non-coding RNAs, share RNP networks and that network hubs define functional sites in these RNAs. RNP-MaP also identified protein interaction networks conserved between mouse and human XIST long non-coding RNAs and defined protein communities whose binding sites colocalize and form networks in functional regions of XIST. RNP-MaP enables discovery and efficient validation of functional protein interaction networks on long RNAs in living cells.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Humanos , Mapas de Interação de Proteínas , RNA Longo não Codificante/metabolismo , Reprodutibilidade dos Testes , Ribonuclease P/metabolismo
7.
ACS Chem Biol ; 15(1): 217-225, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774274

RESUMO

It is increasingly clear that interindividual variability in human gut microbial composition contributes to differential drug responses. For example, gastrointestinal (GI) toxicity is not observed in all patients treated with the anticancer drug irinotecan, and it has been suggested that this variability is a result of differences in the types and levels of gut bacterial ß-glucuronidases (GUSs). GUS enzymes promote drug toxicity by hydrolyzing the inactive drug-glucuronide conjugate back to the active drug, which damages the GI epithelium. Proteomics-based identification of the exact GUS enzymes responsible for drug reactivation from the complexity of the human microbiota has not been accomplished, however. Here, we discover the specific bacterial GUS enzymes that generate SN-38, the active and toxic metabolite of irinotecan, from human fecal samples using a unique activity-based protein profiling (ABPP) platform. We identify and quantify gut bacterial GUS enzymes from human feces with an ABPP-enabled proteomics pipeline and then integrate this information with ex vivo kinetics to pinpoint the specific GUS enzymes responsible for SN-38 reactivation. Furthermore, the same approach also reveals the molecular basis for differential gut bacterial GUS inhibition observed between human fecal samples. Taken together, this work provides an unprecedented technical and bioinformatics pipeline to discover the microbial enzymes responsible for specific reactions from the complexity of human feces. Identifying such microbial enzymes may lead to precision biomarkers and novel drug targets to advance the promise of personalized medicine.


Assuntos
Proteínas de Bactérias/metabolismo , Cicloexanóis/química , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Inibidores Enzimáticos/química , Microbioma Gastrointestinal/fisiologia , Glucuronidase/metabolismo , Irinotecano/química , Animais , Biomarcadores/metabolismo , Biologia Computacional , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/microbiologia , Inibidores Enzimáticos/metabolismo , Fezes/química , Feminino , Glucuronídeos/metabolismo , Humanos , Hidrólise , Irinotecano/metabolismo , Cinética , Masculino , Metaboloma , Camundongos , Modelos Moleculares , Medicina de Precisão , Ligação Proteica , Conformação Proteica
8.
ACS Chem Biol ; 12(8): 2070-2077, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28612602

RESUMO

Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O2-dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.


Assuntos
Globinas/química , Oxigênio , Pectobacterium carotovorum/fisiologia , Percepção de Quorum , Globinas/metabolismo , Modelos Biológicos , Pectobacterium carotovorum/patogenicidade , Transdução de Sinais , Virulência
9.
Front Microbiol ; 8: 496, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386254

RESUMO

Staphylococcus aureus is a leading cause of hospital-acquired infections. It is listed among the top "serious threats" to human health in the USA, due in large part to rising rates of resistance. Many S. aureus infections are recalcitrant to antibiotic therapy due to their ability to form a biofilm, which acts not only as a physical barrier to antibiotics and the immune system, but results in differences in metabolism that further restricts antibiotic efficacy. Development of a modular strategy to synthesize a library of phenolic glycosides allowed for bioactivity testing and identification of anti-biofilm compounds within an extract of the elmleaf blackberry (Rubus ulmifolius). Two ellagic acid (EA) derivatives, EA xyloside and EA rhamnoside, have been identified as components of the Rubus extract. In addition, EA rhamnoside has been identified as an inhibitor of biofilm formation, with activity comparable to the complex extract 220D-F2 (composed of a mixture of EA glycosides), and confirmed by confocal laser scanning microscopy analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA