Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Biochem Biophys ; 747: 109768, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769893

RESUMO

3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αß-sandwiched fold of the AbDHPAO subunit is different from the dual ß-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.

2.
J Biol Chem ; 297(5): 101280, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624314

RESUMO

Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.


Assuntos
Acinetobacter baumannii/enzimologia , Cálcio/química , Frutose-Bifosfato Aldolase/química , Zinco/química , Proteínas de Bactérias , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Especificidade por Substrato
3.
J Biol Chem ; 297(2): 100952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252455

RESUMO

HadA is a flavin-dependent monooxygenase catalyzing hydroxylation plus dehalogenation/denitration, which is useful for biodetoxification and biodetection. In this study, the X-ray structure of wild-type HadA (HadAWT) co-complexed with reduced FAD (FADH-) and 4-nitrophenol (4NP) (HadAWT-FADH--4NP) was solved at 2.3-Å resolution, providing the first full package (with flavin and substrate bound) structure of a monooxygenase of this type. Residues Arg101, Gln158, Arg161, Thr193, Asp254, Arg233, and Arg439 constitute a flavin-binding pocket, whereas the 4NP-binding pocket contains the aromatic side chain of Phe206, which provides π-π stacking and also is a part of the hydrophobic pocket formed by Phe155, Phe286, Thr449, and Leu457. Based on site-directed mutagenesis and stopped-flow experiments, Thr193, Asp254, and His290 are important for C4a-hydroperoxyflavin formation with His290, also serving as a catalytic base for hydroxylation. We also identified a novel structural motif of quadruple π-stacking (π-π-π-π) provided by two 4NP and two Phe441 from two subunits. This motif promotes 4NP binding in a nonproductive dead-end complex, which prevents C4a-hydroperoxy-FAD formation when HadA is premixed with aromatic substrates. We also solved the structure of the HadAPhe441Val-FADH--4NP complex at 2.3-Å resolution. Although 4NP can still bind to this variant, the quadruple π-stacking motif was disrupted. All HadAPhe441 variants lack substrate inhibition behavior, confirming that quadruple π-stacking is a main cause of dead-end complex formation. Moreover, the activities of these HadAPhe441 variants were improved by ⁓20%, suggesting that insights gained from the flavin-dependent monooxygenases illustrated here should be useful for future improvement of HadA's biocatalytic applications.


Assuntos
Flavinas , Biocatálise , Catálise , Flavina-Adenina Dinucleotídeo/metabolismo , Hidroxilação , Cinética , Oxigenases de Função Mista/metabolismo
4.
J Biol Chem ; 296: 100068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465708

RESUMO

Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.


Assuntos
Flavinas/metabolismo , Oxirredutases/metabolismo , Catálise , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Halogenação , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica
5.
FEBS J ; 287(15): 3273-3297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883412

RESUMO

The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Antimaláricos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/metabolismo , Difosfotransferases/metabolismo , Humanos , Malária Falciparum/parasitologia , Conformação Proteica , Homologia de Sequência
6.
Chembiochem ; 20(24): 3020-3031, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31231908

RESUMO

HadA is a flavin-dependent monooxygenase that can catalyze the denitration and dehalogenation of a wide variety of toxicants such as pesticides. Although these enzymatic reactions are useful for bioremediation or biocatalysis, the application of HadA for these purposes is not yet possible because of its low thermostability. In this work we have engineered HadA to be more thermostable through the use of structural, in silico, and rational approaches. The X-ray structure of HadA was solved to obtain a reliable three-dimensional protein model for further prediction of thermostable variants. In silico analysis by using two bioinformatic tools-FireProt and Disulfide by Design-suggested 102 variants that we then further refined by applying rational criteria including the location of a particular residue and its nearby interactions, as well as other biophysical parameters to narrow down the list to six candidates. The G513Y variant was found to be an optimal engineered candidate because it has significantly improved stability relative to the wild-type enzyme and equivalent activity. G513Y has an activity half-life 72 (50 °C) and 160 times (45 °C) longer than that of the wild-type enzyme. Coupled together with thermostable reactions of reduced flavin and NADH-regenerating systems, the G513Y variant can be used to catalyze denitration of 4nitrophenol at 45 °C. Structure/sequence alignments of HadA and its homologues indicate that several flavin-dependent monooxygenases also contain amino acid residues homologous to the G513 of HadA, hence opening up the possibility of applying this engineering approach to improving their thermostabilities as well. Molecular dynamics (MD) simulations confirmed that the improved thermostability of the G513Y variant was due to aromatic hydrocarbon interactions between Y513 and N359, L347, G348, and F349.


Assuntos
Flavinas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Temperatura , Sequência de Aminoácidos , Estabilidade Enzimática , Oxigenases de Função Mista/genética , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica
7.
Arch Biochem Biophys ; 667: 6-13, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31002765

RESUMO

Plasmodium falciparum (Pf), a malarial pathogen, can only synthesize purine nucleotides employing a salvage pathway because it lacks de novo biosynthesis. Adenosine deaminase (ADA), one of the three purine salvage enzymes, catalyzes the irreversible hydrolytic deamination of adenosine to inosine, which is further converted to GMP and AMP for DNA/RNA production. In addition to adenosine conversion, Plasmodium ADA also catalyzes the conversion of 5'-methylthioadenosine, derived from polyamine biosynthesis, into 5'-methylthioinosine whereas the human enzyme is not capable of this function. Here we report the crystal structure of a surface engineered PfADA at a resolution of 2.48 Å, together with results on kinetic studies of PfADA wild-type and active site variants. The structure reveals a novel inosine binding pocket linked to a distinctive PfADA substructure (residues 172-179) derived from a non-conserved gating helix loop (172-188) in Plasmodium spp. and other ADA enzymes. Variants of PfADA and human (h) ADA active site amino acids were generated in order to study their role in catalysis, including PfADA- Phe136, -Thr174, -Asp176, and -Leu179, and hADA-Met155, equivalent to PfADA-Asp176. PfADA-Leu179His showed no effect on kinetic parameters. However, kinetic results of PfADA-Asp176Met/Ala mutants and hADA-Met155Asp/Ala showed that the mutation reduced adenosine and 5'-methylthioadenosine substrate affinity in PfADA and kcat in hADA, thereby reducing catalytic efficiency of the enzyme. Phe136Leu mutant showed increased Km (>10-fold) for both substrates whereas Thr174Ile/Ala only affected 5'-methylthioadenosine binding affinity. Together, the structure with the novel inosine binding pocket and the kinetic data provide insights for rational design of inhibitors against PfADA.


Assuntos
Adenosina Desaminase/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inibidores de Adenosina Desaminase/química , Inibidores de Adenosina Desaminase/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Inosina/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
ChemMedChem ; 13(9): 931-943, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29655285

RESUMO

With the discovery that serine hydroxymethyltransferase (SHMT) is a druggable target for antimalarials, the aim of this study was to design novel inhibitors of this key enzyme in the folate biosynthesis cycle. Herein, 19 novel spirocyclic ligands based on either 2-indolinone or dihydroindene scaffolds and featuring a pyrazolopyran core are reported. Strong target affinities for Plasmodium falciparum (Pf) SHMT (14-76 nm) and cellular potencies in the low nanomolar range (165-334 nm) were measured together with interesting selectivity against human cytosolic SHMT1 (hSHMT1). Four co-crystal structures with Plasmodium vivax (Pv) SHMT solved at 2.2-2.4 Šresolution revealed the key role of the vinylogous cyanamide for anchoring ligands within the active site. The spirocyclic motif in the molecules enforces the pyrazolopyran core to adopt a substantially more curved conformation than that of previous non-spirocyclic analogues. Finally, solvation of the spirocyclic lactam ring of the receptor-bound ligands is discussed.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicina Hidroximetiltransferase/antagonistas & inibidores , Indenos/farmacologia , Oxindóis/farmacologia , Plasmodium/efeitos dos fármacos , Compostos de Espiro/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicina Hidroximetiltransferase/metabolismo , Humanos , Indenos/síntese química , Indenos/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Testes de Sensibilidade Parasitária , Plasmodium/enzimologia , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
9.
ACS Med Chem Lett ; 9(12): 1235-1240, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613332

RESUMO

The S108N mutation of dihydrofolate reductase (DHFR) renders Plasmodium falciparum malaria parasites resistant to pyrimethamine through steric clash with the rigid side chain of the inhibitor. Inhibitors with flexible side chains can avoid this clash and retain effectiveness against the mutant. However, other mutations such as N108S reversion confer resistance to flexible inhibitors. We designed and synthesized hybrid inhibitors with two structural types in a single molecule, which are effective against both wild-type and multiple mutants of P. falciparum through their selective target binding, as demonstrated by X-ray crystallography. Furthermore, the hybrid inhibitors can forestall the emergence of new resistant mutants, as shown by selection of mutants resistant to hybrid compound BT1 from a diverse PfDHFR random mutant library expressed in a surrogate bacterial system. These results show that it is possible to develop effective antifolate antimalarials to which the range of parasite resistance mutations is greatly reduced.

10.
Chemistry ; 23(57): 14345-14357, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28967982

RESUMO

Malaria remains a major threat to mankind due to the perpetual emergence of resistance against marketed drugs. Twenty-one pyrazolopyran-based inhibitors bearing terminal biphenyl, aryl sulfonamide, or aryl sulfone motifs were synthesized and tested towards serine hydroxymethyltransferase (SHMT), a key enzyme of the folate cycle. The best ligands inhibited Plasmodium falciparum (Pf) and Arabidopsis thaliana (At) SHMT in target, as well as PfNF54 strains in cell-based assays in the low nanomolar range (18-56 nm). Seven co-crystal structures with P. vivax (Pv) SHMT were solved at 2.2-2.6 Šresolution. We observed an unprecedented influence of the torsion angle of ortho-substituted biphenyl moieties on cell-based efficacy. The peculiar lipophilic character of the sulfonyl moiety was highlighted in the complexes with aryl sulfonamide analogues, which bind in their preferred staggered orientation. The results are discussed within the context of conformational preferences in the ligands.

11.
J Biotechnol ; 259: 95-102, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28774672

RESUMO

In the pulp bleaching industry, enzymes with robust activity at high pH and temperatures are desirable for facilitating the pre-bleaching process with simplified processing and minimal use of chlorinated compounds. To engineer an enzyme for this purpose, we determined the crystal structure of the Xyn12.2 xylanase, a xylan-hydrolyzing enzyme derived from the termite gut symbiont metagenome, as the basis for structure-based protein engineering to improve Xyn12.2 stability in high heat and alkaline conditions. Engineered cysteine pairs that generated exterior disulfide bonds increased the kcat of Xyn12.2 variants and melting temperature at all tested conditions. These improvements led to up to 4.2-fold increases in catalytic efficiency at pH 9.0, 50°C for 1h and up to 3-fold increases at 60°C. The most effective variants, XynTT and XynTTTE, exhibited 2-3-fold increases in bagasse hydrolysis at pH 9.0 and 60°C compared to the wild-type enzyme. Overall, engineering arginines and phenylalanines for increased pKa and hydrogen bonding improved enzyme catalytic efficiency at high stringency conditions. These modifications were the keys to enhancing thermostability and alkaliphilicity in our enzyme variants, with XynTT and XynTTTE being especially promising for their application to the pulp and paper industry.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Biomassa , Escherichia coli/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Moleculares , Papel
12.
J Med Chem ; 60(12): 4840-4860, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28537728

RESUMO

Target-based approaches toward new antimalarial treatments are highly valuable to prevent resistance development. We report several series of pyrazolopyran-based inhibitors targeting the enzyme serine hydroxymethyltransferase (SHMT), designed to improve microsomal metabolic stability and to identify suitable candidates for in vivo efficacy evaluation. The best ligands inhibited Plasmodium falciparum (Pf) and Arabidopsis thaliana (At) SHMT in target assays and PfNF54 strains in cell-based assays with values in the low nanomolar range (3.2-55 nM). A set of carboxylate derivatives demonstrated markedly improved in vitro metabolic stability (t1/2 > 2 h). A selected ligand showed significant in vivo efficacy with 73% of parasitemia reduction in a mouse model. Five new cocrystal structures with PvSHMT were solved at 2.3-2.6 Å resolution, revealing a unique water-mediated interaction with Tyr63 at the end of the para-aminobenzoate channel. They also displayed the high degree of conformational flexibility of the Cys364-loop lining this channel.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicina Hidroximetiltransferase/antagonistas & inibidores , Animais , Antimaláricos/química , Proteínas de Arabidopsis/antagonistas & inibidores , Técnicas de Química Sintética , Cristalografia por Raios X , Cisteína/química , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Meia-Vida , Ligantes , Malária Falciparum/tratamento farmacológico , Camundongos SCID , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/patogenicidade , Plasmodium vivax/enzimologia , Conformação Proteica , Ratos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacologia
13.
J Med Chem ; 58(7): 3117-30, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25785478

RESUMO

Several of the enzymes related to the folate cycle are well-known for their role as clinically validated antimalarial targets. Nevertheless for serine hydroxymethyltransferase (SHMT), one of the key enzymes of this cycle, efficient inhibitors have not been described so far. On the basis of plant SHMT inhibitors from an herbicide optimization program, highly potent inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) SHMT with a pyrazolopyran core structure were identified. Cocrystal structures of potent inhibitors with PvSHMT were solved at 2.6 Å resolution. These ligands showed activity (IC50/EC50 values) in the nanomolar range against purified PfSHMT, blood-stage Pf, and liver-stage P. berghei (Pb) cells and a high selectivity when assayed against mammalian cell lines. Pharmacokinetic limitations are the most plausible explanation for lack of significant activity of the inhibitors in the in vivo Pb mouse malaria model.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicina Hidroximetiltransferase/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Técnicas de Química Sintética , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Feminino , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Células Hep G2/efeitos dos fármacos , Humanos , Fígado/metabolismo , Fígado/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos Endogâmicos , Camundongos SCID , Microssomos Hepáticos/efeitos dos fármacos , Organismos Geneticamente Modificados , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/enzimologia , Plasmodium falciparum/patogenicidade , Plasmodium vivax/enzimologia , Plasmodium vivax/patogenicidade , Pirazóis/química , Ratos
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3177-86, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478836

RESUMO

Plasmodium parasites, the causative agent of malaria, rely heavily on de novo folate biosynthesis, and the enzymes in this pathway have therefore been explored extensively for antimalarial development. Serine hydroxymethyltransferase (SHMT) from Plasmodium spp., an enzyme involved in folate recycling and dTMP synthesis, has been shown to catalyze the conversion of L- and D-serine to glycine (Gly) in a THF-dependent reaction, the mechanism of which is not yet fully understood. Here, the crystal structures of P. vivax SHMT (PvSHMT) in a binary complex with L-serine and in a ternary complex with D-serine (D-Ser) and (6R)-5-formyltetrahydrofolate (5FTHF) provide clues to the mechanism underlying the control of enzyme activity. 5FTHF in the ternary-complex structure was found in the 6R form, thus differing from the previously reported structures of SHMT-Gly-(6S)-5FTHF from other organisms. This suggested that the presence of D-Ser in the active site can alter the folate-binding specificity. Investigation of binding in the presence of D-Ser and the (6R)- or (6S)-5FTHF enantiomers indicated that both forms of 5FTHF can bind to the enzyme but that only (6S)-5FTHF gives rise to a quinonoid intermediate. Likewise, a large surface area with a highly positively charged electrostatic potential surrounding the PvSHMT folate pocket suggested a preference for a polyglutamated folate substrate similar to the mammalian SHMTs. Furthermore, as in P. falciparum SHMT, a redox switch created from a cysteine pair (Cys125-Cys364) was observed. Overall, these results assert the importance of features such as stereoselectivity and redox status for control of the activity and specificity of PvSHMT.


Assuntos
Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Malária Vivax/parasitologia , Plasmodium vivax/enzimologia , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Plasmodium vivax/química , Plasmodium vivax/metabolismo , Ligação Proteica , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1517-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914963

RESUMO

Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Šresolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.


Assuntos
Glicina Hidroximetiltransferase/química , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA