Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38877192

RESUMO

Iron and steel slags have a long history of both disposal and beneficial use in the coastal zone. Despite the large volumes of slag deposited, comprehensive assessments of potential risks associated with metal(loid) leaching from iron and steel by-products are rare for coastal systems. This study provides a national-scale overview of the 14 known slag deposits in the coastal environment of Great Britain (those within 100 m of the mean high-water mark), comprising geochemical characterisation and leaching test data (using both low and high ionic strength waters) to assess potential leaching risks. The seaward facing length of slag deposits totalled at least 76 km, and are predominantly composed of blast furnace (iron-making) slags from the early to mid-20th Century. Some of these form tidal barriers and formal coastal defence structures, but larger deposits are associated with historical coastal disposal in many former areas of iron and steel production, notably the Cumbrian coast of England. Slag deposits are dominated by melilite phases (e.g. gehlenite), with evidence of secondary mineral formation (e.g. gypsum, calcite) indicative of weathering. Leaching tests typically show lower element (e.g. Ba, V, Cr, Fe) release under seawater leaching scenarios compared to deionised water, largely ascribable to the pH buffering provided by the former. Only Mn and Mo showed elevated leaching concentrations in seawater treatments, though at modest levels (<3 mg/L and 0.01 mg/L, respectively). No significant leaching of potentially ecotoxic elements such as Cr and V (mean leachate concentrations <0.006 mg/L for both) were apparent in seawater, which micro-X-Ray Absorption Near Edge Structure (µXANES) analysis show are both present in slags in low valence (and low toxicity) forms. Although there may be physical hazards posed by extensive erosion of deposits in high-energy coastlines, the data suggest seawater leaching of coastal iron and steel slags in the UK is likely to pose minimal environmental risk.

2.
J Environ Manage ; 327: 116862, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462479

RESUMO

The effectiveness of liquid carbon additions to enhance zinc removal in laboratory-scale short hydraulic residence time (19 h) compost bioreactors receiving synthetic mine water with a high influent zinc concentration (45 mg/L) was investigated. Effective removal of such elevated zinc concentrations could not be sustained by sulfate reduction and/or other attenuation processes without carbon supplementation. Propionic acid addition resulted in improved and sustained performance by promoting the activities of sulfate reducing bacteria, leading to efficient zinc removal (mean 99%) via bacterial sulfate reduction. In contrast, cessation of propionic acid addition led to carbon limitation and the growth of sulfur oxidising bacteria, compromising zinc removal by bacterial sulfate reduction. These research findings demonstrate the potential for modest liquid carbon additions to compost-based passive treatment systems to engineer microbial responses which enhance rates of zinc attenuation in a short hydraulic residence time, enabling remediation of highly polluting mine drainage at sites with limited land availability.


Assuntos
Sulfatos , Zinco , Bactérias , Ácidos , Reatores Biológicos/microbiologia , Carbono
3.
Environ Sci Technol ; 53(2): 702-709, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30566333

RESUMO

Geochemical and hydrological data from abandoned mine watersheds demonstrated that (1) point sources of pollution fail to account for total receiving watercourse metal load at higher flows and (2) an inverse relationship exists between river flow and pH due to peatland runoff. Quantifying the varying importance of point and diffuse pollution sources enabled prediction of treatment benefits for a major point source of pollution in one watershed. Instream zinc load increases with river flow (∼3 to 14 kg Zn/d) due to diffuse groundwater and surface runoff pollution sources at higher flows. Lab tests demonstrated that metal release from the streambed, driven by pH decreases at higher flows, also contribute to increased downstream metal loads. Predicting point source treatment benefits demonstrates major instream improvements at low flow (zinc decreases from >800 to 120 µg Zn/L). At higher flows treatment benefits diminish (Zn decreases from 240 to only 200 µg Zn/L) due to the greater influence of diffuse sources. A quantitative understanding of the variable importance of point and diffuse sources of pollution, and instream processes of metal attenuation and release, is crucial to evaluating the benefits of treatment to downstream water quality.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Hidrologia , Rios
4.
Environ Sci Pollut Res Int ; 22(14): 10800-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25761992

RESUMO

Red mud is a highly alkaline (pH >12) waste product from bauxite ore processing. The red mud spill at Ajka, Hungary, in 2010 released 1 million m(3) of caustic red mud into the surrounding area with devastating results. Aerobic and anaerobic batch experiments and solid phase extraction techniques were used to assess the impact of red mud addition on the mobility of Cu and Ni in soils from near the Ajka spill site. Red mud addition increases aqueous dissolved organic carbon (DOC) concentrations due to soil alkalisation, and this led to increased mobility of Cu and Ni complexed to organic matter. With Ajka soils, more Cu was mobilised by contact with red mud than Ni, despite a higher overall Ni concentration in the solid phase. This is most probably because Cu has a higher affinity to form complexes with organic matter than Ni. In aerobic experiments, contact with the atmosphere reduced soil pH via carbonation reactions, and this reduced organic matter dissolution and thereby lowered Cu/Ni mobility. These data show that the mixing of red mud into organic rich soils is an area of concern, as there is a potential to mobilise Cu and Ni as organically bound complexes, via soil alkalisation. This could be especially problematic in locations where anaerobic conditions can prevail, such as wetland areas contaminated by the spill.


Assuntos
Óxido de Alumínio/química , Cobre/química , Níquel/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Óxido de Alumínio/análise , Cobre/análise , Desastres , Recuperação e Remediação Ambiental , Inundações , Água Subterrânea/química , Hungria , Concentração de Íons de Hidrogênio , Níquel/análise , Solo/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
5.
J Environ Monit ; 14(8): 2063-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22772744

RESUMO

An integrated assessment of biological activity and ecotoxicity of fluvial sediments in the Marcal river catchment (3078 km(2)), western Hungary, is presented following the accidental spill of bauxite processing residue (red mud) in Ajka. Red mud contaminated sediments are characterised by elevated pH, elevated trace element concentrations (e.g. As, Co, Cr, V), high exchangeable Na, and induce an adverse effect on test species across a range of trophic levels. While background contamination of the river system is highlighted by adverse effects on some test species at sites unaffected by red mud, the most pronounced toxic effects apparent in Vibrio fischeri bioluminescence inhibition, Lemna minor bioassay and Sinapis alba root and shoot growth occur at red mud depositional hotspots in the lower Torna Creek and upper Marcal. Heterocypris incongruens bioassays show no clear patterns, although the most red mud-rich sites do exert an adverse effect. Red mud does however appear to induce an increase in the density of aerobic and facultative anaerobic bacterial communities when compared with unaffected sediments and reference sites. Given the volume of material released in the spill, it is encouraging that the signal of the red mud on aquatic biota is visible at a relatively small number of sites. Gypsum-affected samples appear to induce an adverse effect in some bioassays (Sinapis alba and Heterocypris incongruens), which may be a feature of fine grain size, limited nutrient supply and greater availability of trace contaminants in the channel reaches that are subject to intense gypsum dosing. Implications for monitoring and management of the spill are discussed.


Assuntos
Óxido de Alumínio/toxicidade , Vazamento de Resíduos Químicos , Sedimentos Geológicos/química , Resíduos Industriais/análise , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri , Óxido de Alumínio/análise , Animais , Bioensaio , Crustáceos , Monitoramento Ambiental , Hungria , Plantas/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 46(6): 3085-92, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22324637

RESUMO

Results are presented from X-ray absorption spectroscopy based analysis of As, Cr, and V speciation within samples of bauxite ore processing residue (red mud) collected from the spill site at Ajka, Western Hungary. Cr K-edge XANES analysis found that Cr is present as Cr(3+) substituted into hematite, consistent with TEM analysis. V K-edge XANES spectra have E(1/2) position and pre-edge features consistent with the presence of V(5+) species, possibly associated with Ca-aluminosilicate phases. As K-edge XANES spectra identified As present as As(5+). EXAFS analysis reveals arsenate phases in red mud samples. When alkaline leachate from the spill site is neutralized with HCl, 94% As and 71% V are removed from solution during the formation of amorphous Al-oxyhydroxide. EXAFS analysis of As in this precipitate reveals the presence of arsenate Al-oxyhydroxide surface complexes. These results suggest that in the circumneutral pH, oxic conditions found in the Torna and Upper Marcal catchments, incorporation and sorption, respectively, will restrict the environmental mobility of Cr and As. V is inefficiently removed from solution by neutralization, therefore, the red mud may act as a source of mobile V(5+) where the red mud deposits are not removed from affected land.


Assuntos
Arsênio/análise , Cromo/análise , Resíduos Industriais/análise , Poluentes do Solo/análise , Vanádio/análise , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Hungria , Microscopia Eletrônica de Transmissão , Espectroscopia por Absorção de Raios X , Difração de Raios X
7.
Sci Total Environ ; 420: 238-49, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22326322

RESUMO

Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III)(aq). The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long-term functionality of such systems.


Assuntos
Ferro/análise , Enxofre/análise , Poluentes da Água/análise , Purificação da Água/métodos , Água/química , Ferro/química , Isótopos , Oxirredução , Enxofre/química , Isótopos de Enxofre/análise , Isótopos de Enxofre/química , Poluentes da Água/química
8.
Environ Sci Technol ; 45(12): 5147-55, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21591764

RESUMO

This paper identifies the spatial extent of bauxite processing residue (red mud)-derived contaminants and modes of transport within the Marcal and Rába river systems after the dike failure at Ajka, western Hungary. The geochemical signature of the red mud is apparent throughout the 3076 km² Marcal system principally with elevated Al, V, As, and Mo. Elevated concentrations of Cr, Ga, and Ni are also observed within 2 km of the source areas in aqueous and particulate phases where hyperalkalinity (pH < 13.1) is apparent. Although the concentrations of some trace elements exceed aquatic life standards in waters (e.g., V, As) and fluvial sediments (As, Cr, Ni, V), the spatial extent of these is limited to the Torna Creek and part of the upper Marcal. Source samples show a bimodal particle size distribution (peaks at 0.7 and 1.3 µm) which lends the material to ready fluvial transport. Where elevated concentrations are found in fluvial sediments, sequential extraction suggests the bulk of the As, Cr, Ni, and V are associated with residual (aqua-regia/HF digest) phases and unlikely to be mobile in the environment. However, at some depositional hotspots, association of As, Cr, and V with weak acid-extractable phases is observed.


Assuntos
Óxido de Alumínio/química , Recuperação e Remediação Ambiental , Rios/química , Colapso Estrutural , Poluentes Químicos da Água/isolamento & purificação , Geografia , Sedimentos Geológicos/química , Hungria , Íons , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Análise de Componente Principal , Oligoelementos/análise
9.
Sci Total Environ ; 408(20): 4877-85, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20605568

RESUMO

A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (<177 mg L(-1)) and aluminium (<85 mg L(-1)) and to increase pH (>3.2) and alkalinity (> or =0 mg L(-1) CaCO(3) eq). Secondary objectives were to decrease zinc (<2.8 mg L(-1)), manganese (<20.5 mg L(-1)) and sulfate (<2120 mg L(-1)). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO(4)(2)(-). Alkalinity (74%) and pH (95% as H(+)) were increased. Area adjusted removal rates (Fe=1.49+/-0.66 g d(-1) m(-2); acidity=6.7+/-4.9 g d(-1) m(-2)) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.


Assuntos
Minas de Carvão , Recuperação e Remediação Ambiental/métodos , Metais/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Alumínio/análise , Monitoramento Ambiental , Água Doce/química , Ferro/análise , Estações do Ano , Tempo , Movimentos da Água , Zinco/análise
10.
Environ Sci Technol ; 43(7): 2476-81, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452904

RESUMO

Few studies have characterized reactive media for phosphorus (P) removal in passive treatment systems in terms of both batch and continuous flow experiments. This study uses basic oxygen steel slag (BOS) from a U.K. feedstock. Batch experiments demonstrated the effective removal of phosphorus with varying initial pH, initial P concentration, clast size, and ionic strength to represent environmental conditions. Continuous flow column experiments, operated for 406 days, with an influent P concentration of 1-50 mg/L (typical of domestic and dairy parlour waste) achieved removal of up to 62%; a second set of column experiments running for 306 days with an influent P concentration of 100-300 mg/L achieved a maximum effective removal of 8.39 mg/g. This figure is higher than that for other slags reviewed in this study (e.g., EAF Slag 3.93 mg/g and NZ melter slag 1.23 mg/g). XRD, E-SEM, and EDX data provide evidence for a sequential series of increasingly less soluble P mineral phases forming on the BOS surface (octa-calcium phosphate, brushite, and hydroxylapatite),which suggests that BOS may be a suitable substrate in passive treatment systems, providing a long-term P removal mechanism.


Assuntos
Oxigênio/química , Fósforo/isolamento & purificação , Aço/química , Poluentes Químicos da Água/isolamento & purificação , Microscopia Eletrônica de Varredura , Concentração Osmolar , Espectrofotometria Ultravioleta
11.
J Hazard Mater ; 162(1): 512-20, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18583040

RESUMO

Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10-month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 and 8.1gm(-3)day(-1), respectively, with a mean treatment efficiency of 32% at a low mean residence time of 49min. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities.


Assuntos
Compostos Férricos/química , Resíduos Industriais/análise , Mineração , Poluição Química da Água/análise , Zinco/isolamento & purificação , Adsorção , Algoritmos , Carbonato de Cálcio/química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Metais/análise , Metais/isolamento & purificação , Microscopia Eletrônica de Varredura , Projetos Piloto , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA