Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Rep ; 14(1): 12345, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811833

RESUMO

Pitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp. jonesianum) and Mesoamerica (subsp. nuttaliae). To test the utility of C. berlandieri as a resource for quinoa breeding, we produced the whole-genome DNA sequence of PI 433,231, a huauzontle from Puebla, México. The 1.295 Gb genome was assembled into 18 pseudomolecules and annotated using RNAseq data from multiple tissues. Alignment with the v.2.0 genome of Chilean-origin C. quinoa cv. 'QQ74' revealed several inversions and a 4A-6B reciprocal translocation. Despite these rearrangements, some quinoa x pitseed goosefoot crosses produce highly fertile hybrids with faithful recombination, as evidenced by a high-density SNP linkage map constructed from a Bolivian quinoa 'Real-1' × BYU 937 (Texas coastal pitseed goosefoot) F2 population. Recombination in that cross was comparable to a 'Real-1' × BYU 1101 (Argentine C. hircinum) F2 population. Furthermore, SNP-based phylogenetic and population structure analyses of 90 accessions supported the hypothesis of multiple independent domestications and descent from a common 4 × ancestor, with a likely North American Center of Origin.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Melhoramento Vegetal/métodos , Genoma de Planta , México , Filogenia
2.
Commun Biol ; 6(1): 1263, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092895

RESUMO

Quinoa (Chenopodium quinoa Willd.) is an allotetraploid seed crop with the potential to help address global food security concerns. Genomes have been assembled for four accessions of quinoa; however, all assemblies are fragmented and do not reflect known chromosome biology. Here, we use in vitro and in vivo Hi-C data to produce a chromosome-scale assembly of the Chilean accession PI 614886 (QQ74). The final assembly spans 1.326 Gb, of which 90.5% is assembled into 18 chromosome-scale scaffolds. The genome is annotated with 54,499 protein-coding genes, 96.9% of which are located on the 18 largest scaffolds. We also report an updated genome assembly for the B-genome diploid C. suecicum and use it, together with the A-genome diploid C. pallidicaule, to identify genomic rearrangements within the quinoa genome, including a large pericentromeric inversion representing 71.7% of chromosome Cq3B. Repetitive sequences comprise 65.2%, 48.6%, and 57.9% of the quinoa, C. pallidicaule, and C. suecicum genomes, respectively. Evidence suggests that the B subgenome is more dynamic and has expanded more than the A subgenome. These genomic resources will enable more accurate assessments of genome evolution within the Amaranthaceae and will facilitate future efforts to identify variation in genes underlying important agronomic traits in quinoa.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Genoma de Planta , Sequências Repetitivas de Ácido Nucleico , Cromossomos
3.
Plant Genome ; 16(3): e20349, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37195017

RESUMO

Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity beginning in the early 2000s due to its protein quality, glycemic index, and high fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri), quinoa's North American free-living sister species, grows on disturbed and sandy substrates across the North America, including saline coastal sands, southwestern deserts, subtropical highlands, the Great Plains, and boreal forests. Together with South American avian goosefoot (Chenopodium hircinum) they comprise the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed goosefoot's North American range are approximately 35 AA diploids, most of which are adapted to a diversity of niche environments. We chose to assemble a reference genome for Sonoran A-genome Chenopodium watsonii due to fruit morphological and high (>99.3%) preliminary sequence-match similarities with quinoa, along with its well-established taxonomic status. The genome was assembled into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94% comprised in nine chromosome-scale scaffolds and 93.9% Benchmarking Universal Single-Copy Orthologs genes identified as single copy and 3.4% as duplicated. A high degree of synteny, with minor and mostly telomeric rearrangements, was found when comparing this taxon with the previously reported genome of South American C. pallidicaule and the A-subgenome chromosomes of C. quinoa. Phylogenetic analysis was performed using 10,588 single-nucleotide polymorphisms generated by resequencing a panel of 41 New World AA diploid accessions and the Eurasian H-genome diploid Chenopodium vulvaria, along with three AABB tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned the psammophyte Chenopodium subglabrum on the branch containing A-genome sequences from the ATGC. We also present evidence for long-range dispersal of Chenopodium diploids between North and South America.


Assuntos
Chenopodium quinoa , Chenopodium , Chenopodium quinoa/genética , Chenopodium/genética , Filogenia , Genoma de Planta , Tetraploidia , Cromossomos
4.
Genome Biol Evol ; 14(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35881674

RESUMO

Djulis (Chenopodium formosanum Koidz.) is a crop grown since antiquity in Taiwan. It is a BCD-genome hexaploid (2n = 6x = 54) domesticated form of lambsquarters (C. album L.) and a relative of the allotetraploid (AABB) C. quinoa. As with quinoa, djulis seed contains a complete protein profile and many nutritionally important vitamins and minerals. While still sold locally in Taiwanese markets, its traditional culinary uses are being lost as diets of younger generations change. Moreover, indigenous Taiwanese peoples who have long safeguarded djulis are losing their traditional farmlands. We used PacBio sequencing and Hi-C-based scaffolding to produce a chromosome-scale, reference-quality assembly of djulis. The final genome assembly spans 1.63 Gb in 798 scaffolds, with 97.8% of the sequence contained in 27 scaffolds representing the nine haploid chromosomes of each sub-genome of the species. Benchmarking of universal, single-copy orthologs indicated that 98.5% of the conserved orthologous genes for Viridiplantae are complete within the assembled genome, with 92.9% duplicated, as expected for a polyploid. A total of 67.8% of the assembly is repetitive, with the most common repeat being Gypsy long terminal repeat retrotransposons, which had significantly expanded in the B sub-genome. Gene annotation using Iso-Seq data from multiple tissues identified 75,056 putative gene models. Comparisons to quinoa showed strong patterns of synteny which allowed for the identification of homoeologous chromosomes, and sub-genome-specific sequences were used to assign homoeologs to each sub-genome. These results represent the first hexaploid genome assembly and the first assemblies of the C and D genomes of the Chenopodioideae subfamily.


Assuntos
Chenopodium , Chenopodium/genética , Cromossomos de Plantas/genética , Genoma de Planta , Poliploidia , Sintenia
5.
Genome Biol Evol ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106544

RESUMO

Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.


Assuntos
Flores , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos , Flores/genética , Fenótipo
6.
Plant Cell Environ ; 44(12): 3606-3622, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510479

RESUMO

Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.


Assuntos
Chenopodium quinoa/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Células Vegetais/metabolismo , Epiderme Vegetal/metabolismo , Chenopodium quinoa/química , Lipidômica , Células Vegetais/química , Epiderme Vegetal/química , Cloreto de Sódio/metabolismo , Estresse Fisiológico
7.
Appl Plant Sci ; 8(12): e11402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344093

RESUMO

PREMISE: Many programs can identify simple sequence repeat (SSR) motifs in genomic data. SSRgenotyper extends SSR identification to en masse genotyping from resequencing data for diversity panels and linkage mapping populations. METHODS AND RESULTS: SSRgenotyper will find and genotype SSRs from SAM files and an SSR reference FASTA. Several outputs are possible, including a simple table with the SSR marker name, position, and SSR alleles, defined by the repeat number of the repeat motif. Specific output files include a GENEPOP-formatted file for downstream genetic diversity analyses and a traditional A, H, B mapping file output that is phased to the parents of the population for biparental linkage map construction. Linkage maps produced using SSRgenotyper genotypes were highly collinear with physical maps and correctly inferred known phylogenies. CONCLUSIONS: SSRgenotyper provides an easy-to-use, accurate, and scalable SSR genotyping platform for whole-genome resequencing data. SSRgenotyper is freely available at https://github.com/dlewis27/SSRgenotyper.

8.
Front Plant Sci ; 11: 624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523593

RESUMO

Atriplex hortensis (2n = 2x = 18, 1C genome size ∼1.1 gigabases), also known as garden orach and mountain-spinach, is a highly nutritious, broadleaf annual of the Amaranthaceae-Chenopodiaceae alliance (Chenopodiaceae sensu stricto, subfam. Chenopodioideae) that has spread in cultivation from its native primary domestication area in Eurasia to other temperate and subtropical regions worldwide. Atriplex L. is a highly complex but, as understood now, a monophyletic group of mainly halophytic and/or xerophytic plants, of which A. hortensis has been a vegetable of minor importance in some areas of Eurasia (from Central Asia to the Mediterranean) at least since antiquity. Nonetheless, it is a crop with tremendous nutritional potential due primarily to its exceptional leaf and seed protein quantities (approaching 30%) and quality (high levels of lysine). Although there is some literature describing the taxonomy and production of A. hortensis, there is a general lack of genetic and genomic data that would otherwise help elucidate the genetic variation, phylogenetic positioning, and future potential of the species. Here, we report the assembly of the first high-quality, chromosome-scale reference genome for A. hortensis cv. "Golden." Long-read data from Oxford Nanopore's MinION DNA sequencer was assembled with the program Canu and polished with Illumina short reads. Contigs were scaffolded to chromosome scale using chromatin-proximity maps (Hi-C) yielding a final assembly containing 1,325 scaffolds with a N50 of 98.9 Mb - with 94.7% of the assembly represented in the nine largest, chromosome-scale scaffolds. Sixty-six percent of the genome was classified as highly repetitive DNA, with the most common repetitive elements being Gypsy-(32%) and Copia-like (11%) long-terminal repeats. The annotation was completed using MAKER which identified 37,083 gene models and 2,555 tRNA genes. Completeness of the genome, assessed using the Benchmarking Universal Single Copy Orthologs (BUSCO) metric, identified 97.5% of the conserved orthologs as complete, with only 2.2% being duplicated, reflecting the diploid nature of A. hortensis. A resequencing panel of 21 wild, unimproved and cultivated A. hortensis accessions revealed three distinct populations with little variation within subpopulations. These resources provide vital information to better understand A. hortensis and facilitate future study.

9.
Appl Plant Sci ; 7(11): e11300, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832282

RESUMO

PREMISE: Cañahua is a semi-domesticated crop grown in high-altitude regions of the Andes. It is an A-genome diploid (2n = 2x = 18) relative of the allotetraploid (AABB) Chenopodium quinoa and shares many of its nutritional benefits. Cañahua seed contains a complete protein, a low glycemic index, and offers a wide variety of nutritionally important vitamins and minerals. METHODS: The reference assembly was developed using a combination of short- and long-read sequencing techniques, including multiple rounds of Hi-C-based proximity-guided assembly. RESULTS: The final assembly of the ~363-Mbp genome consists of 4633 scaffolds, with 96.6% of the assembly contained in nine scaffolds representing the nine haploid chromosomes of the species. Repetitive element analysis classified 52.3% of the assembly as repetitive, with the most common repeat identified as long terminal repeat retrotransposons. MAKER annotation of the final assembly yielded 22,832 putative gene models. DISCUSSION: When compared with quinoa, strong patterns of synteny support the hypothesis that cañahua is a close A-genome diploid relative, and thus potentially a simplified model diploid species for genetic analysis and improvement of quinoa. Resequencing and phylogenetic analysis of a diversity panel of cañahua accessions suggests that coordinated efforts are needed to enhance genetic diversity conservation within ex situ germplasm collections.

10.
Plant J ; 99(6): 1144-1158, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108001

RESUMO

Although peroxisomes play a key role in plant metabolism under both normal and stressful growth conditions, the impact of drought and heat stress on the peroxisomes remains unknown. Quinoa represents an informative system for dissecting the impact of abiotic stress on peroxisome proliferation because it is adapted to marginal environments. Here we determined the correlation of peroxisome abundance with physiological responses and yield under heat, drought and heat plus drought stresses in eight genotypes of quinoa. We found that all stresses caused a reduction in stomatal conductance and yield. Furthermore, H2 O2 content increased under drought and heat plus drought. Principal component analysis demonstrated that peroxisome abundance correlated positively with H2 O2 content in leaves and correlated negatively with yield. Pearson correlation coefficient for yield and peroxisome abundance (r = -0.59) was higher than for commonly used photosynthetic efficiency (r = 0.23), but comparable to those for classical stress indicators such as soil moisture content (r = 0.51) or stomatal conductance (r = 0.62). Our work established peroxisome abundance as a cellular sensor for measuring responses to heat and drought stress in the genetically diverse populations. As heat waves threaten agricultural productivity in arid climates, our findings will facilitate identification of genetic markers for improving yield of crops under extreme weather patterns.


Assuntos
Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Resposta ao Choque Térmico/fisiologia , Peroxissomos/metabolismo , Produtos Agrícolas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Peroxissomos/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Filogenia , Estômatos de Plantas/metabolismo
11.
Sci Rep ; 9(1): 185, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655548

RESUMO

Quinoa has recently gained international attention because of its nutritious seeds, prompting the expansion of its cultivation into new areas in which it was not originally selected as a crop. Improving quinoa production in these areas will benefit from the introduction of advantageous traits from free-living relatives that are native to these, or similar, environments. As part of an ongoing effort to characterize the primary and secondary germplasm pools for quinoa, we report the complete mitochondrial and chloroplast genome sequences of quinoa accession PI 614886 and the identification of sequence variants in additional accessions from quinoa and related species. This is the first reported mitochondrial genome assembly in the genus Chenopodium. Inference of phylogenetic relationships among Chenopodium species based on mitochondrial and chloroplast variants supports the hypotheses that 1) the A-genome ancestor was the cytoplasmic donor in the original tetraploidization event, and 2) highland and coastal quinoas were independently domesticated.


Assuntos
Chenopodium quinoa/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Genoma Mitocondrial/genética , Produtos Agrícolas , Genoma de Planta/genética , Filogenia , Sementes
12.
Front Plant Sci ; 8: 1023, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680429

RESUMO

Chenopodium quinoa (quinoa) is an emerging crop that produces nutritious grains with the potential to contribute to global food security. Quinoa can also grow on marginal lands, such as soils affected by high salinity. To identify candidate salt tolerance genes in the recently sequenced quinoa genome, we used a multifaceted approach integrating RNAseq analyses with comparative genomics and topology prediction. We identified 219 candidate genes by selecting those that were differentially expressed in response to salinity, were specific to or overrepresented in quinoa relative to other Amaranthaceae species, and had more than one predicted transmembrane domain. To determine whether these genes might underlie variation in salinity tolerance in quinoa and its close relatives, we compared the response to salinity stress in a panel of 21 Chenopodium accessions (14 C. quinoa, 5 C. berlandieri, and 2 C. hircinum). We found large variation in salinity tolerance, with one C. hircinum displaying the highest salinity tolerance. Using genome re-sequencing data from these accessions, we investigated single nucleotide polymorphisms and copy number variation (CNV) in the 219 candidate genes in accessions of contrasting salinity tolerance, and identified 15 genes that could contribute to the differences in salinity tolerance of these Chenopodium accessions.

14.
Nature ; 542(7641): 307-312, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178233

RESUMO

Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.


Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
15.
Mol Biol Evol ; 31(8): 2094-107, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24803640

RESUMO

Eutrema salsugineum and Schrenkiella parvula are salt-tolerant relatives of the salt-sensitive species Arabidopsis thaliana. An important component of salt tolerance is the regulation of Na(+) ion homeostasis, which occurs in part through proteins encoded by the Cation/Proton Antiporter-1 (CPA1) gene family. We used a combination of evolutionary and functional analyses to examine the role of CPA1 genes in the salt tolerance of E. salsugineum and Sc. parvula, and found evidence that changes in CPA1-mediated Na(+) extrusion may contribute to the salt tolerance of both species. Specifically, we found that a member of the CPA1 family, the Na(+)/H(+) antiporter gene Salt Overly Sensitive 1 (SOS1), evolved under positive selection in E. salsugineum. In the absence of activation by the SOS2 kinase/SOS3 calcium-binding protein complex, SOS1 from E. salsugineum (EsSOS1) confers greater salt tolerance than SOS1 from Sc. parvula (SpSOS1) and Ar. thaliana (AtSOS1) when expressed in a salt-sensitive strain of Saccharomyces cerevisiae. A single amino acid change in the putative autoinhibitory domain is required but not sufficient for the enhanced salt tolerance conferred by EsSOS1. When activated by SOS2 and SOS3, both EsSOS1 and SpSOS1 confer greater salt tolerance than AtSOS1. Enhanced SOS1-mediated Na(+) extrusion therefore appears to contribute to the salt tolerance of both E. salsugineum and Sc. parvula, although through apparently different mechanisms.


Assuntos
Brassicaceae/metabolismo , Proteínas de Plantas/genética , Tolerância ao Sal , Trocadores de Sódio-Hidrogênio/genética , Brassicaceae/classificação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Mutagênese Sítio-Dirigida , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Seleção Genética , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
16.
Nat Genet ; 45(8): 891-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817568

RESUMO

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.


Assuntos
Brassicaceae/genética , Sequência Conservada , Sequências Reguladoras de Ácido Nucleico , Arabidopsis/genética , Brassicaceae/classificação , Análise por Conglomerados , Biologia Computacional , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Filogenia , Seleção Genética
17.
Front Plant Sci ; 4: 46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23518688

RESUMO

Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA