Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Water Res ; 255: 121429, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503184

RESUMO

Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.

2.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37219943

RESUMO

Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.


Assuntos
Linfoma Difuso de Grandes Células B , Linfócitos T , Humanos , Camundongos , Animais , Linfoma Difuso de Grandes Células B/patologia , Fibroblastos/metabolismo , Linfonodos , Microambiente Tumoral
3.
Water Res ; 228(Pt A): 119360, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402060

RESUMO

Bubble aeration has been widely applied in water/wastewater treatment, however its low gas utilization rate results in high energy consumption. Application of micro-nanobubbles (MNB) has emerged as a process with the potential to significantly increase gas utilisation due to their high relative surface area and high gas-liquid mass transfer efficiency. In this study, we demonstrate through calibrated models that MNB of an optimum bubble size can shrink and burst at or below the water surface enabling (1) all encapsulated gas to thoroughly dissolve in water, and (2) the bursting of nanobubbles to potentially generate free radicals. Through the understanding of MNB dimensional characteristics and bubble behaviour in water, a dynamic model that integrated force balance (i.e. buoyancy force, gravity, drag force, Basset force and virtual mass force), and mass transfer was developed to describe the rising velocity and radius variation of MNB along its upward trajectory. Unlike for conventional millimetre-sized bubbles, intensive gas dissolution of MNBs led to radius reduction for small bubbles, while a large initial radius triggers bubble swelling. The initial water depth was also crucial, where greater depth could drive the potential for bubble shrinkage so that they were more liable to contract. For example, the optimum bubble size of air (42-194 µm) and oxygen (127-470 µm) MNB that could achieve complete gas transfer (100% gas utilisation) for a range of specific water depths (0.5-10 m) were calculated. The modelling results for microbubbles (10-530 µm) were well validated by the experimental data (R2>0.85). However, the validation of the modelling results for nanobubble (<1 µm) aeration requires further study due to a lack of available empirical data. In this study, the proposed model and analysis provided new insights into understanding bubble dynamics in water and offered fundamental guidance for practitioners looking to upgrade bubble aeration system.


Assuntos
Gravitação , Água , Microbolhas , Oxigênio
4.
Proc Math Phys Eng Sci ; 478(2262): 20220044, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702594

RESUMO

We introduce a correspondence between phylogenetic trees and Brauer diagrams, inspired by links between binary trees and matchings described by Diaconis and Holmes (1998 Proc. Natl Acad. Sci. USA 95, 14 600-14 602. (doi:10.1073/pnas.95.25.14600)). This correspondence gives rise to a range of semigroup structures on the set of phylogenetic trees, and opens the prospect of many applications. We furthermore extend the Diaconis-Holmes correspondence from binary trees to non-binary trees and to forests, showing for instance that the set of all forests is in bijection with the set of partitions of finite sets.

5.
Water Res ; 217: 118420, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468557

RESUMO

A pilot scale chlorine contact tank (CCT) with flexible baffling was installed at an operational water treatment plant (WTP), taking a direct feed from the outlet of the rapid gravity filters (RGF). For the first time, disinfection efficacy was established by direct microbial monitoring in a continuous reactor using flow cytometry (FCM). Disinfection variables of dose, time, and hydraulic efficiency (short circuiting and dispersion) were explored following characterisation of the reactor's residence time distributions (RTD) by tracer testing. FCM enabled distinction to be made between changes in disinfection reactor design where standard culture-based methods could not. The product of chlorine concentration (C) and residence time (t) correlated well with inactivation of microbes, organisms, with the highest cell reductions (N/N0) reaching <0.025 at Ctx¯ of 20 mg.min/L and above. The influence of reactor geometry on disinfection was best shown from the Ct10. This identified that the initial level of microbial inactivation was higher in unbaffled reactors for low Ct10 values, although the highest levels of inactivation of 0.015 could only be achieved in the baffled reactors, because these conditions enabled the highest Ct10 values to be achieved. Increased levels of disinfection were closely associated with increased formation of the trihalomethane disinfection by-products. The results highlight the importance of well-designed and operated CCT. The improved resolution afforded by FCM provides a tool that can dynamically quantify disinfection processes, enabling options for much better process control.


Assuntos
Cloro , Purificação da Água , Desinfecção/métodos , Citometria de Fluxo , Purificação da Água/métodos
6.
J Hazard Mater ; 431: 128530, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220125

RESUMO

Ion Exchange (IEX) applications for drinking water can be limited due to high volumes of brine, brine waste and treated water corrosivity. Reusing the resin by operating at reduced regeneration frequency can overcome this. However, assessing changes on the resin loading over reuse cycles is complex because multiple presaturant ions participate in the exchange and existing models only account for the exchange with one presaturant ion. This study developed a theoretical multicomponent model for the determination of IEX equilibria when the resin loading increases due to reuse. The model suggested that both electrostatic interactions and admicelle formation were the separation mechanisms. The model revealed that under reduced regeneration frequencies, brine use and waste generation can be reduced by more than 90%, where the bicarbonate-form resin offered the potential for lower corrosivity. However, changes in resin loading after 5 reuse cycles showed that the risk of corrosion increased. For the tested source water, reusing the bicarbonate-form resin every 5 cycles would achieve the most sustainable option with 41% NOM removal and 79% brine and waste reduction. Under these conditions, almost 100% of exchange capacity is recovered after regeneration.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Bicarbonatos , Troca Iônica
7.
Sci Total Environ ; 815: 152626, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016936

RESUMO

Removal of pesticides from agricultural run-off close to the point of application has the potential to prevent or reduce the pollution of water sources used for drinking. This research considered the novel application of activated carbon (AC) fabric as a sorbent material for removal of pesticides from field run-off. AC fabric was tested for the removal of the molluscicide pesticide metaldehyde under a range of flow rates at both laboratory and pilot scale. Metaldehyde at an initial concentration of 10 µg/L was removed effectively from deionised (DI) water and real source water by the AC cloth under all conditions tested, reaching removal of 1375 and 876 µg/g (equivalent to 169 and 264 mg/m2), respectively. The adsorption followed pseudo-second order kinetics (k2 of 29.9 and 34.8 g/µg min for the AC fabric and GAC), providing rapid removal of metaldehyde within the first 5 min of contact. In single pass and flow through conditions, stabilised removal of 46% metaldehyde was achieved by the AC fabric bundle for treatment of 700 L of real water in a pilot scale flume. This equated to removal of 454 µg/m2, although significantly more removal would be expected over longer duration testing given the stabilised removal and the equilibrium capacity of the fabric seen during the batch isotherm testing. The work provides evidence to show that AC fabric could be used in the catchment to reduce peak loads of pesticides in sources used for drinking water.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
8.
Water Res ; 203: 117531, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388494

RESUMO

Microbial contamination of water in the form of highly-resistant bacterial spores can cause a long-term risk of waterborne disease. Advanced photocatalysis has become an effective approach to inactivate bacterial spores due to its potential for efficient solar energy conversion alongside reduced formation of disinfection by-products. However, the overall efficiency of the process still requires significant improvements. Here, we proposed and evaluated a novel visible light photocatalytic water disinfection technology by its close coupling with micro/nano bubbles (MNBs). The inactivation rate constant of Bacillus subtilis spores reached 1.28 h-1, which was 5.6 times higher than that observed for treatment without MNBs. The superior performance for the progressive destruction of spores' cells during the treatment was confirmed by transmission electron microscopy (TEM) and excitation-emission matrix (EEM) spectra determination. Experiments using scavengers of reactive oxygen species (ROSs) revealed that H2O2 and •OH were the primary active species responsible for the inactivation of spores. The effective supply of oxygen from air MNBs helped accelerate the hole oxidation of H2O2 on the photocatalyst (i.e. Ag/TiO2). In addition, the interfacial photoelectric effect from the MNBs was also confirmed to contribute to the spore inactivation. Specifically, MNBs induced strong light scattering, consequently increasing the optical path length in the photocatalysis medium by 54.8% at 700nm and enhancing light adsorption of the photocatalyst. The non-uniformities in dielectricity led to a high-degree of heterogeneity of the electric field, which triggered the formation of a region of enhanced light intensity which ultimately promoted the photocatalytic reaction. Overall, this study provided new insights on the mechanisms of photocatalysis coupled with MNB technology for advanced water treatment.


Assuntos
Desinfecção , Água , Catálise , Escherichia coli , Peróxido de Hidrogênio , Luz , Processos Fotoquímicos , Titânio
10.
Nucl Med Commun ; 42(3): 332-336, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252512

RESUMO

BACKGROUND: Radium-223 dichloride (Ra-223) therapy improves overall survival in bony metastatic castration-resistant prostate cancer (mCRPC) patients. Recent guidance change recommends Ra-223 following at least two prior therapies for mCRPC. We evaluated how this change affects overall survival and the optimal timing of Ra-223 in the mCRPC treatment pathway. METHODS: Retrospective analysis of all mCRPC patients receiving Ra-223 therapy at a single UK centre over a 70-month period. Overall survival, number of prior lines of therapy commenced before Ra-223 initiation and number of Ra-223 therapy cycles completed were identified. RESULTS: One hundred ninety-one mCRPC patients received Ra-223 therapy during the study period. One hundred twenty-one (63%) received one prior therapy (group 1) and 70 (37%) received two prior therapies (group 2). Median survival in group 1 was significantly improved, compared to group 2 (448 days vs. 341 days (P = 0.03). Subgroup analysis of 111/191 (58%) patients that completed the recommended six Ra-223 therapy cycles showed additional improved survival. Median survival in group 1 was incrementally significantly improved, compared to group 2 within these patients (665 days vs. 552 days; P = 0.05). There was no difference in the number of patients completing the recommenced six cycles of therapy between the groups [72/121 (59%) vs. 39/70 (56%); P = 0.61]. CONCLUSION: We found a significant survival benefit when Ra-223 was used earlier in the mCRPC treatment pathway, with additional survival advantage seen in those patients completing all six Ra-223 cycles. Our results support the use of Ra-223 earlier in the treatment pathway.


Assuntos
Neoplasias de Próstata Resistentes à Castração/radioterapia , Rádio (Elemento)/uso terapêutico , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Retrospectivos , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
11.
Sci Total Environ ; 754: 142152, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920405

RESUMO

The current study compared the impact of three different unit processes, coagulation, granular activated carbon (GAC), and a novel suspended ion exchange (SIX) technology, on disinfection by-product formation potential (DBPFP) from two UK lowland water sources with medium to high bromide content. Specific attention was given to the influence of the organic molecular weight (MW) fraction on DBPFP as well as the impact of bromide concentration. Whilst few studies have investigated the impact of MW fractions from Liquid Chromatography with Organic Carbon Detection (LC-OCD) analysis on dissolved organic carbon (DOC) removal by different processes, none have studied the influence of DOC MW fractions from this analysis on DBP formation. The impact of higher bromide concentration was to decrease the total trihalomethane (THM) and haloacetic acid (HAA) mass concentration, in contrast to previously reported studies. Results indicated that for a moderate bromide concentration source (135 µg/L), the THM formation potential was reduced by 22% or 64% after coagulation or SIX treatment, respectively. For a high bromide content source (210 µg/L), the THM formation potential removal was 47% or 69% following GAC or SIX treatment, respectively. The trend was the same for HAAs, albeit with greater differences between the two processes/feedwaters with reference to overall removal. A statistical analysis indicated that organic matter of MW > 350 g/mol had a significant impact on DBPFP. A multiple linear regression of the MW fractions against DBPFP showed a strong correlation (R2 between 0.90 and 0.93), indicating that LC-OCD analysis alone could be used to predict DBP formation with reasonable accuracy, and offering the potential for rapid risk assessment of water sources.

12.
J High Energy Phys ; 2021(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35342281

RESUMO

We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform A ˜ mixing exterior-forms of all degrees and satisfying the chiral self-duality condition A ˜ = * A ˜ χ , where χ denotes the superalgebra grading operator. This superconnection contains Yang-Mills vectors valued in the even Lie subalgebra, together with scalars and self-dual tensors valued in the odd module, all coupling only to the charge parity CP-positive Fermions. The Fermion quantum loops then induce the usual Yang-Mills-scalar Lagrangian, the self-dual Avdeev-Chizhov propagator of the tensors, plus a new vector-scalar-tensor vertex and several quartic terms which match the geometric definition of the supercurvature. Applied to the SU(2/1) Lie-Kac simple superalgebra, which naturally classifies all the elementary particles, the resulting quantum field theory is anomaly-free and the interactions are governed by the super-Killing metric and by the structure constants of the superalgebra.

13.
15.
Sci Total Environ ; 712: 136413, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31927449

RESUMO

The UV/Chlorine process has gained attention in recent years due to the high quantum yield and absorbance of the chlorine species. However, there are still many unknowns around its application as a treatment for drinking water. The potential for the formation of disinfection by-products (DBPs) is one of them. There are no studies reporting on the formation of trihalomethanes (THMs) or haloacetic acids (HAAs) in complex matrices, such as real source waters, at UV wavelengths tailored to the UV/Chlorine process, which has been possible thanks to the development of light emitting diodes (LEDs). In addition, consideration of mitigation measures that might be needed after UV/Chlorine treatment for full scale application have not been previously reported. Specifically, the novelty of this work resides in the use of an innovative reactor using UV-LEDs emitting at 285 nm for the removal of three pesticides (metaldehyde, carbetamide and mecoprop), the evaluation of THM, HAA and bromate formation in real water sources by UV/Chlorine treatment and the mitigation effect of subsequent GAC treatment. A new parameter, the applied optical dose (AOD), has been defined for UV reactors, such as the one in the present study, where the irradiated volume is non-uniform. The results showed the feasibility of using the UV/Chlorine process with LEDs, although a compromise is needed between pH and chlorine concentration to remove pesticides while minimising DBP formation. Overall, the UV/Chlorine process did not significantly increase THM or HAA formation at pH 7.9-8.2 at the studied wavelength. At acidic pH, however, THM formation potential increased up to 30% after UV/Chlorine treatment with concentrations up to 60 µg/L. HAA formation potential increased between 100 and 180%, although concentrations never exceeded 35 µg/L. In all cases, GAC treatment mitigated DBP formation, reducing THM formation potential to concentrations between 3 and 16 µg/L, and HAA formation potential between 4 and 30 µg/L.

16.
Chemosphere ; 239: 124770, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726525

RESUMO

Over twenty thousand persons rely on water from Atuwara River for drinking and other domestic purposes, hence the need to ascertain the human health risk inherent in such practice. Seventy-two water samples were collected from River Atuwara during the dry and wet seasons of 2018, and the concentration of heavy metals (Pb, As, Ni, Cr, Zn, Cu, and Cd) were measured using ICP-OES. A newly developed human health risk assessment method, HHRISK code was used to estimate the health risks associated with consumption of water from Atuwara River. Results obtained revealed that the concentration of heavy metals in the river was as follows: Cd < Ni < Pb < Cr < Cu < As < Zn in the wet season and Cd < Pb < Ni < Cu < Cr < As < Zn during the dry season. Principal component analysis suggested that industrial effluents, agricultural activities and base-rock interaction are responsible for pollution of Atuwara River. The cumulative hazard index (HIcum) obtained was 678.0 ±â€¯36.8 (for adult) and 1392.0 ±â€¯132 (for child) for non-carcinogenic risks. A cumulative carcinogenic risk (CRcum) of 1.01E-1±5.26E-3 and 4.96E-2±5.05E-3 was obtained for adult and children respectively, suggesting that up to 1 in 10 adults and 1 in 20 children may suffer from cancer over their lifetime as a result of consumption and exposure to water from River Atuwara. These results highlight the fact that unavailability of safe drinking water in many parts of the world remains a real and persistent risk which must be tackled.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Adulto , Agricultura , Criança , Humanos , Nigéria , Análise de Componente Principal , Medição de Risco , Rios , Estações do Ano , Qualidade da Água
17.
Environ Sci Technol ; 53(16): 9734-9743, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31329424

RESUMO

Ion exchange (IEX) can successfully remove natural organic matter (NOM) from surface water. However, the removal mechanism is not well understood due to the complexity and variability of NOM in real source waters as well as the influence of multiple parameters on the removal behavior. For example, this includes the physicochemical properties of the NOM and IEX resin, and the presence of competing anions. Model compounds with a range of physical and chemical characteristics were therefore used to determine the mechanisms of NOM removal by IEX resins. Fifteen model compounds were selected to evaluate the influence of hydrophobicity, size, and charge of organic molecules on the removal by ion exchange, both individually and in mixtures. Three different resins, comprising polystyrene and polyacrylic resin of macroporous and gellular structure, showed that charge density (CD) was the most important characteristic that controlled the removal, with CD of >5 mequiv mgDOC-1 resulting in high removal (≥89%). Size exclusion of compounds with high MW (≥8 kDa) was evident. The hydrophobicity of the resin and model compound was particularly important for removal of neutral molecules such as resorcinol, which was best removed by the more hydrophobic polystyrene resin. Relationships were identified that provided explanations of the interactions observed between NOM and IEX resin in real waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ânions , Troca Iônica , Resinas de Troca Iônica , Compostos Orgânicos
18.
Environ Int ; 130: 104893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226555

RESUMO

Flow cytometry (FCM) and the ability to measure both total and intact cell populations through DNA staining methodologies has rapidly gained attention and consideration across the water sector in the past decade. In this study, water quality monitoring was undertaken over three years across 213 drinking water treatment works (WTW) in the Scottish Water region (Total n = 39,340). Samples subject to routine regulatory microbial analysis using culture-based methods were also analysed using FCM. In addition to final treated water, the bacterial content in raw water was measured over a one-year period. Three WTW were studied in further detail using on-site inter-stage sampling and analysis with FCM. It was demonstrated that there was no clear link between FCM data and the coliform samples taken for regulatory monitoring. The disinfectant Ct value (Ct = mg·min/L) was the driving factor in determining final water cell viability and the proportion of intact cells (intact/total cells) and the frequency of coliform detections in the water leaving the WTW. However, the free chlorine residual, without consideration of treatment time, was shown to have little impact on coliform detections or cell counts. Amongst the three treatment trains monitored in detail, the membrane filtration WTW showed the greatest log removal and robustness in terms of final water intact cell counts. Flow cytometry was shown to provide insights into the bacteriological quality of water that adds significant value over and above that provided by traditional bacterial monitoring.


Assuntos
Técnicas de Cultura de Células/métodos , Água Potável/microbiologia , Citometria de Fluxo/métodos , Microbiologia da Água/normas , Purificação da Água/normas , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas
19.
J Water Health ; 17(3): 357-370, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31095512

RESUMO

Most commercial swimming pools use pressurised filters, typically containing sand media, to remove suspended solids as part of the water treatment process designed to keep water attractive, clean and safe. The accidental release of faecal material by bathers presents a poorly quantified risk to the safety of swimmers using the pool. The water treatment process usually includes a combination of maintaining a residual concentration of an appropriate biocide in the pool together with filtration to physically remove particles, including microbial pathogens, from the water. However, there is uncertainty about the effectiveness of treatment processes in removing all pathogens, and there has been growing concern about the number of reported outbreaks of the gastrointestinal disease cryptosporidiosis, caused by the chlorine-resistant protozoan parasite Cryptosporidium. A number of interacting issues influence the effectiveness of filtration for the removal of Cryptosporidium oocysts from swimming pools. This review explains the mechanisms by which filters remove particles of different sizes (including oocyst-sized particles, typically 4-6 µm), factors that affect the efficiency of particle removal (such as filtration velocity), current recommended management practices, and identifies further work to support the development of a risk-based management approach for the management of waterborne disease outbreaks from swimming pools.


Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/crescimento & desenvolvimento , Piscinas , Microbiologia da Água , Animais , Filtração , Oocistos
20.
Environ Technol ; 40(13): 1734-1743, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30777799

RESUMO

Chlorine is globally the most widely used chemical for water disinfection. Whereas disinfection efficiency is well known to depend on water pH and temperature, the effect of turbidity is less well studied. Although turbidity is measured online in most drinking water works and most countries where regulations exist have set limits of <1 NTU for water leaving the works, the composition of turbidity is typically unknown. Given the heterogeneous nature of substances contributing to turbidity, the aim of this work was to study the effect of selected compounds on chlorination efficacy. The effect of humic acids and chalk on the inactivation of the indicator bacteria Escherichia coli and Enterococcus faecalis was assessed at neutral pH at different turbidity levels using both plate counting and flow cytometry in combination with membrane integrity staining. For humic acids, a turbidity of 1 NTU (corresponding to 2 mg L-1) was identified as a critical threshold, which when exceeded was found to have a negative impact on chlorine disinfection. Chalk, on the other hand, had no measurable impact up to 5 NTU. The observation applied to both bacterial species with identical conclusions from the two diagnostic methods. Results corroborate that different turbidity causing substances affect chlorination efficiency to very different extents with chlorine demand by organic material probably being the most important determinant. In the case of turbidities >1 NTU, turbidity measurement benefits from the consideration of the organic content as mere NTU values do not allow predicting an impact on chlorination efficiency.


Assuntos
Desinfecção , Purificação da Água , Carbonato de Cálcio , Cloro , Halogenação , Substâncias Húmicas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA