Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475301

RESUMO

Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.

2.
Biofabrication ; 15(2)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36863017

RESUMO

Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-ß1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvß3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.


Assuntos
Líquido Extracelular , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular
3.
Ann Biomed Eng ; 51(6): 1199-1215, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36593306

RESUMO

We investigated the potential correlation between the fluid shear stress and the proliferation of bone prostate cancer cells on the surface of nanoclay-based scaffolds in a perfusion bioreactor. Human mesenchymal stem cells (hMSCs) were seeded on the scaffolds to initiate bone growth. After 23 days, prostate cancer cells (MDAPCa2b) were cultured on top of the osteogenically differentiated hMSCs. The scaffolds were separated into two groups subjected to two distinct conditions: (i) static (no flow); and (ii) dynamic (with flow) conditions to recapitulate bone metastasis of prostate cancer. Based on measured data, Computational Fluid Dynamics (CFD) models were constructed to determine the velocity and shear stress distributions on the scaffold surface. Our experimental results show distinct differences in the growth pattern of hMSCs and MDAPCa2b cells between the static and dynamic conditions. Our computational results further suggest that the dynamic flow leads to drastic change in cell morphology and tumorous distribution. Our work points to a strong correlation between tumor growth and local interstitial flows in bones.


Assuntos
Neoplasias da Próstata , Alicerces Teciduais , Humanos , Masculino , Engenharia Tecidual/métodos , Osso e Ossos , Proliferação de Células , Reatores Biológicos
4.
Mater Adv ; 3(20): 7484-7500, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36324871

RESUMO

Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33718691

RESUMO

In recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant in vitro disease models that closely mimic in vivo conditions. Here, we review nanocomposite materials and scaffolds used for the design of in vitro models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models. Also, we highlight the application of tissue-engineered bone as a tool for faithful recapitulation of the microenvironment of metastatic prostate and breast cancer, since these two types of cancer have the propensity to metastasize to bone. Overall, we summarize recent efforts on developing 3D in vitro models of bone metastatic cancers that provide a platform to study tumor progression and facilitate high-throughput drug screening.

6.
Biofabrication ; 13(3)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418550

RESUMO

Metastatic prostate cancer spreads preferentially to the bone, causing skeletal complications associated with significant morbidity and a poor prognosis, despite current therapeutic approaches. Hence, it is imperative to understand the complex metastatic cascade to develop therapeutic interventions for treating metastatic prostate cancer. Increasing evidence suggests the synergistic role of biochemical and biophysical cues in cancer progression at metastases. However, the mechanism underlying the crosstalk between interstitial flow-induced mechanical stimuli and prostate cancer progression at the bone microenvironment remains poorly understood. To this end, we have developed a three-dimensional (3D)in vitrodynamic model of prostate cancer bone metastasis using perfusion bioreactor and compared our results with static conditions to delineate the role of flow-induced shear stress on prostate cancer progression at metastases. We observed an increase in human mesenchymal stem cell (hMSCs) proliferation and differentiation rate under the dynamic culture. The hMSCs form cell agglutinates under static culture, whereas the hMSCs exhibited a directional alignment with broad and flattened morphology under dynamic culture. Further, the expression of mesenchymal to epithelial transition biomarkers is increased in bone metastasized prostate cancer models, and large changes are observed in the cellular and tumoroid morphologies under dynamic culture. Evaluation of cell adhesion proteins indicated that the altered cancer cell morphologies resulted from the constant force pulling due to increased E-cadherin and phosphorylated focal adhesion kinase proteins under shear stress. Overall, we report a successful 3Din vitrodynamic model to recapitulate bone metastatic prostate cancer behavior under dynamic conditions.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Reatores Biológicos , Humanos , Masculino , Perfusão , Alicerces Teciduais , Microambiente Tumoral
7.
ACS Biomater Sci Eng ; 6(5): 2600-2611, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463270

RESUMO

Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/ß-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/ß-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/ß-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, ß-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher ß-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/ß-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/ß-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/ß-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Diferenciação Celular , Humanos , Osteogênese , Microambiente Tumoral , Via de Sinalização Wnt
8.
Medicine (Baltimore) ; 98(47): e17981, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31764807

RESUMO

RATIONALE: Adult hyperammonemia is most often the result of hepatic dysfunction. Hyperammonemia in the setting of normal hepatic function is a much less common phenomenon and has usually been associated with medications and certain disease states. Here, we present an unusual case of severe hyperammonemia caused physiologically by intense muscle activity in a patient lacking any evidence of liver disease. PATIENT CONCERNS: A 36-year-old woman was brought to the emergency department for a suicide attempt after being found covered in Lysol and Clorox germicidal bleach. She was noted to be in a state of violent psychosis with extreme agitation and had to be sedated and intubated for airway protection. DIAGNOSIS AND INTERVENTIONS: Initial labs revealed hyperammonemia, lactic acidosis, and anion gap metabolic acidosis. Aminotransferases, bilirubin, and creatine kinase (CK) were normal. Renal function, prothrombin time, activated partial thromboplastin time, and international normalized ratio were also unremarkable and remained so at 24 hours. Ethyl alcohol, acetaminophen, salicylate, and valproic acid were all undetectable in blood. She received 2 doses of lactulose overnight, with a subsequent bowel movement. Next day, her mentation, serum ammonia level, and lactic acid level were back to normal, and she was extubated. Aminotransferases and CK levels were elevated but improved with supportive care. A detailed history and relevant biochemical investigations were unremarkable for any other etiology of hyperammonemia including the common inborn errors of metabolism (IEM). The combination of clinical findings of extreme skeletal muscle activity along with hyperammonemia and lactic acidosis, and subsequently rhabdomyolysis in the setting of unremarkable history and otherwise normal hepatic function strongly suggest the myokinetic origin of hyperammonemia in the patient. OUTCOME: The patient recovered well with supportive care and was discharged on day 5. LESSONS: This unique case illustrates the important role of skeletal muscle in the human metabolism of ammonia. In our discussion, we also elucidate the underlying pathophysiology, with the objective of improving clinician understanding of various differential diagnoses.


Assuntos
Hiperamonemia/etiologia , Músculo Esquelético/metabolismo , Adulto , Cresóis/intoxicação , Feminino , Humanos , Índice de Gravidade de Doença , Hipoclorito de Sódio/intoxicação , Tentativa de Suicídio
9.
Comput Biol Chem ; 76: 109-117, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990790

RESUMO

Janus kinase 1 and 3 are non-receptor protein tyrosine kinases, involved in the regulation of various cytokines implicated in the pathogenesis of autoimmune and inflammatory disease conditions. Thus, they serve as therapeutic targets for the designing of multi-targeted agents for the treatment of inflammatory-mediated pathological conditions. In the present study, diverse inhibitors of JAK1 and JAK3 were considered for the development of ligand-based pharmacophore models, followed by docking analysis to design putative dual inhibitors. The pharmacophore models were generated in PHASE 3.4, and top five models for each target were selected on the basis of survival minus inactive score. The best model for JAK1 (AAADH.25) and JAK3 (ADDRR.142) were selected corresponding to the highest value of Q2test. Both models were employed for the screening of a PHASE database, and subsequently, the retrieved hits were filtered employing molecular docking in JAK1 and JAK3 proteins. The stable interactions between retrieved hits and proteins were confirmed using molecular dynamics simulations. Finally, ADME properties of screened dual inhibitors displaying essential interactions with both proteins were calculated. Thus, the new leads obtained in this way may be prioritized for experimental validation as potential novel therapeutic agents in the treatment of various autoimmune and inflammatory disorders related to JAK1 and JAK3.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade
10.
Mol Divers ; 18(2): 253-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24415188

RESUMO

JAK2 and JAK3 are non-receptor protein tyrosine kinases implicated in B-cell- and T-cell-mediated diseases. Both enzymes work via different pathways but are involved in the pathogenesis of common lymphoid-derived diseases. Hence, targeting both Janus kinases together can be a potential strategy for the treatment of these diseases. In the present study, two separate pharmacophore-based 3D-QSAR models ADRR.92 (Q(2)(test)0.663, R(2)(train) 0.849, F value 219.3) for JAK2 and ADDRR.142 (Q(2)(test)0.655, R(2)(train) 0.869, F value 206.9) for JAK3 were developed. These models were employed for the screening of a PHASE database of approximately 1.5 million compounds; subsequently, the retrieved hits were screened employing docking simulations with JAK2 and JAK3 proteins. Finally, ADME properties of screened dual inhibitors displaying essential interactions with both proteins were calculated to filter candidates with poor pharmacokinetic profiles. These candidates could serve as novel therapeutic agents in the treatment of lymphoid-related diseases.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Absorção Fisico-Química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Janus Quinase 2/química , Janus Quinase 3/química , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA