Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 19(2): 272-280, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30565619

RESUMO

Production of hydrocarbons from shale is a complex process that necessitates the extraction of multi-component hydrocarbons trapped in multi-scale nanopores. While advances in nanofluidics have allowed researchers to probe thermodynamics and transport in single, discrete nanochannels, these studies present a highly simplified version of shale reservoirs with homogeneous pore structures and/or single-component fluid compositions. In this study, we develop and apply a 30 000-pore nanomodel that captures the inherent heterogeneity in reservoir pore sizes (100 nm pores gated by 5 nm-pores) to study vaporization of a representative natural gas hydrocarbon mixture. The nanomodel matches major North American formations in the volumetric and number contributions of the pore sizes, porosity (10.5%), and ultra-low permeability (44 nD). Combined experimental and analytical results show 3000× slower vaporization owing to the nanoscale throat bottlenecks. At low temperatures, mixture effects reduce rates further with stochastic vaporization of light components in large pores dominating. Collectively this approach captures the coupled complexity of multicomponent, multiphase fluids in multiscale geometries that is inherent to this resource.

2.
Phys Chem Chem Phys ; 19(12): 8223-8229, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28271101

RESUMO

We apply micro- and nanofluidics to study fundamental phase change behaviour at nanoscales, as relevant to shale gas/oil production. We investigate hydrocarbon phase transition in sub-100 nm channels under conditions that mimic the pressure drawdown process. Measured cavitation pressures are compared with those predicted from the nucleation theory. We find that cavitation pressure in the nanochannels corresponds closer to the spinodal limit than that predicted from classical nucleation theory. This deviation indicates that hydrocarbons remain in the liquid phase in nano-sized pores under pressures much lower than the saturation pressure. Depending on the initial nucleation location - along the channel or at the end - two types of bubble growth dynamics were observed. Bubble growth was measured experimentally at different nucleation conditions, and results agree with a fluid dynamics model including evaporation rate, instantaneous bulk liquid velocity, and bubble pressure. Collectively these results demonstrate, characterize, and quantify isothermal bubble nucleation and growth of a pure substance in nanochannels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA