Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322137

RESUMO

Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species' distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. We explored this question in detail in the cold-tolerant kelp species Saccharina latissima, using microsatellites and double digest restriction site-associated DNA sequencing ( ddRAD-seq) derived single nucleotide polymorphisms (SNPs) to analyze the genetic diversity and structure in 11 sites spanning the entire European Atlantic latitudinal range of this species. In addition, we checked for statistical correlation between genetic marker allele frequencies and three environmental proxies (sea surface temperature, salinity, and water turbidity). Our findings revealed that genetic diversity was significantly higher for the northernmost locality (Spitsbergen) compared to the southern ones (Northern Iberia), which we discuss in light of the current state of knowledge on phylogeography of S. latissima and the potential influence of the recent climatic changes on the population structure of this species. Seven SNPs and 12 microsatellite alleles were found to be significantly associated with at least one of the three environmental variables. We speculate on the putative adaptive functions of the genes associated with the outlier markers and the importance of these markers for successful conservation and aquaculture strategies for S. latissima in this age of rapid global change.


Assuntos
Alelos , Kelp/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Oceano Atlântico , Filogeografia
2.
Toxics ; 8(2)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290111

RESUMO

The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM-but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15-90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA