Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Digit Med ; 6(1): 155, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604895

RESUMO

Electronic health records are often incomplete, reducing the power of genetic association studies. For some diseases, such as knee osteoarthritis where the routine course of diagnosis involves an X-ray, image-based phenotyping offers an alternate and unbiased way to ascertain disease cases. We investigated this by training a deep-learning model to ascertain knee osteoarthritis cases from knee DXA scans that achieved clinician-level performance. Using our model, we identified 1931 (178%) more cases than currently diagnosed in the health record. Individuals diagnosed as cases by our model had higher rates of self-reported knee pain, for longer durations and with increased severity compared to control individuals. We trained another deep-learning model to measure the knee joint space width, a quantitative phenotype linked to knee osteoarthritis severity. In performing genetic association analysis, we found that use of a quantitative measure improved the number of genome-wide significant loci we discovered by an order of magnitude compared with our binary model of cases and controls despite the two phenotypes being highly genetically correlated. In addition we discovered associations between our quantitative measure of knee osteoarthritis and increased risk of adult fractures- a leading cause of injury-related death in older individuals-, illustrating the capability of image-based phenotyping to reveal epidemiological associations not captured in the electronic health record. For diseases with radiographic diagnosis, our results demonstrate the potential for using deep learning to phenotype at biobank scale, improving power for both genetic and epidemiological association analysis.

2.
Science ; 381(6655): eadf8009, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471560

RESUMO

The human skeletal form underlies bipedalism, but the genetic basis of skeletal proportions (SPs) is not well characterized. We applied deep-learning models to 31,221 x-rays from the UK Biobank to extract a comprehensive set of SPs, which were associated with 145 independent loci genome-wide. Structural equation modeling suggested that limb proportions exhibited strong genetic sharing but were independent of width and torso proportions. Polygenic score analysis identified specific associations between osteoarthritis and hip and knee SPs. In contrast to other traits, SP loci were enriched in human accelerated regions and in regulatory elements of genes that are differentially expressed between humans and great apes. Combined, our work identifies specific genetic variants that affect the skeletal form and ties a major evolutionary facet of human anatomical change to pathogenesis.


Assuntos
Evolução Molecular , Genoma Humano , Herança Multifatorial , Esqueleto , Humanos , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Esqueleto/anatomia & histologia , Esqueleto/crescimento & desenvolvimento , Masculino , Feminino
3.
PLoS Comput Biol ; 19(6): e1011149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262052

RESUMO

COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severity through time. Using anonymized hospitalization data from March 11, 2020 to June 1, 2021 and fine-grain infection hospitalization rates, we estimate the time-varying burden of COVID-19 by age group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 23.7% (95% CrI: 22.5-24.8%) infection rate and 29.4% (95% CrI: 28.0-31.0%) case reporting rate. Individuals over 65 were less likely to be infected than younger age groups (11.2% [95% CrI: 10.3-12.0%] vs 25.1% [95% CrI: 23.7-26.4%]), but more likely to be hospitalized (1,965 per 100,000 vs 376 per 100,000) and have their infections reported (53% [95% CrI: 49-57%] vs 28% [95% CrI: 27-30%]). We used a mixed effect poisson regression model to estimate disparities in infection and reporting rates as a function of social vulnerability. We compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0-3.0) times the infection rate and only 70% (95% CrI: 60%-82%) the reporting rate compared to the less vulnerable communities. Inequality persisted but declined significantly over the 15-month study period. Our results suggest that further public health efforts are needed to mitigate local COVID-19 disparities and that the CDC's social vulnerability index may serve as a reliable predictor of risk on a local scale when surveillance data are limited.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Etnicidade , Hospitalização , Saúde Pública
4.
PLoS One ; 18(4): e0284025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023065

RESUMO

As SARS-CoV-2 emerged as a global threat in early 2020, China enacted rapid and strict lockdown orders to prevent introductions and suppress transmission. In contrast, the United States federal government did not enact national orders. State and local authorities were left to make rapid decisions based on limited case data and scientific information to protect their communities. To support local decision making in early 2020, we developed a model for estimating the probability of an undetected COVID-19 epidemic (epidemic risk) in each US county based on the epidemiological characteristics of the virus and the number of confirmed and suspected cases. As a retrospective analysis we included county-specific reproduction numbers and found that counties with only a single reported case by March 16, 2020 had a mean epidemic risk of 71% (95% CI: 52-83%), implying COVID-19 was already spreading widely by the first detected case. By that date, 15% of US counties covering 63% of the population had reported at least one case and had epidemic risk greater than 50%. We find that a 10% increase in model estimated epidemic risk for March 16 yields a 0.53 (95% CI: 0.49-0.58) increase in the log odds that the county reported at least two additional cases in the following week. The original epidemic risk estimates made on March 16, 2020 that assumed all counties had an effective reproduction number of 3.0 are highly correlated with our retrospective estimates (r = 0.99; p<0.001) but are less predictive of subsequent case increases (AIC difference of 93.3 and 100% weight in favor of the retrospective risk estimates). Given the low rates of testing and reporting early in the pandemic, taking action upon the detection of just one or a few cases may be prudent.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Controle de Doenças Transmissíveis , Pandemias/prevenção & controle
5.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36712136

RESUMO

The human skeletal form underlies our ability to walk on two legs, but unlike standing height, the genetic basis of limb lengths and skeletal proportions is less well understood. Here we applied a deep learning model to 31,221 whole body dual-energy X-ray absorptiometry (DXA) images from the UK Biobank (UKB) to extract 23 different image-derived phenotypes (IDPs) that include all long bone lengths as well as hip and shoulder width, which we analyzed while controlling for height. All skeletal proportions are highly heritable (∻40-50%), and genome-wide association studies (GWAS) of these traits identified 179 independent loci, of which 102 loci were not associated with height. These loci are enriched in genes regulating skeletal development as well as associated with rare human skeletal diseases and abnormal mouse skeletal phenotypes. Genetic correlation and genomic structural equation modeling indicated that limb proportions exhibited strong genetic sharing but were genetically independent of width and torso proportions. Phenotypic and polygenic risk score analyses identified specific associations between osteoarthritis (OA) of the hip and knee, the leading causes of adult disability in the United States, and skeletal proportions of the corresponding regions. We also found genomic evidence of evolutionary change in arm-to-leg and hip-width proportions in humans consistent with striking anatomical changes in these skeletal proportions in the hominin fossil record. In contrast to cardiovascular, auto-immune, metabolic, and other categories of traits, loci associated with these skeletal proportions are significantly enriched in human accelerated regions (HARs), and regulatory elements of genes differentially expressed through development between humans and the great apes. Taken together, our work validates the use of deep learning models on DXA images to identify novel and specific genetic variants affecting the human skeletal form and ties a major evolutionary facet of human anatomical change to pathogenesis.

6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35105729

RESUMO

Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.


Assuntos
COVID-19/epidemiologia , Hospitais , Pandemias , SARS-CoV-2 , Atenção à Saúde , Previsões , Hospitalização/estatística & dados numéricos , Humanos , Saúde Pública , Estudos Retrospectivos , Estados Unidos
7.
EClinicalMedicine ; 26: 100479, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32838239

RESUMO

BACKGROUND: Pandemic SARS-CoV-2 was first reported in Wuhan, China on December 31, 2019. Twenty-one days later, the US identified its first case--a man who had traveled from Wuhan to the state of Washington. Recent studies in the Wuhan and Seattle metropolitan areas retrospectively tested samples taken from patients with COVID-like symptoms. In the Wuhan study, there were 4 SARS-CoV-2 positives and 7 influenza positives out of 26 adults outpatients who sought care for influenza-like-illness at two central hospitals prior to January 12, 2020. The Seattle study reported 25 SARS-CoV-2 positives and 442 influenza positives out of 2353 children and adults who reported acute respiratory illness prior to March 9, 2020. Here, we use these findings to extrapolate the early prevalence of symptomatic COVID-19 in Wuhan and Seattle. METHODS: For each city, we estimate the ratio of COVID-19 to influenza infections from the retrospective testing data and estimate the age-specific prevalence of influenza from surveillance reports during the same time period. Combining these, we approximate the total number of symptomatic COVID-19 infections. FINDINGS: In Wuhan, there were an estimated 1386 [95% CrI: 420-3793] symptomatic cases over 30 of COVID-19 between December 30, 2019 and January 12, 2020. In Seattle, we estimate that 2268 [95% CrI: 498, 6069] children under 18 and 4367 [95% CrI: 2776, 6526] adults were symptomatically infected between February 24 and March 9, 2020. We also find that the initial pandemic wave in Wuhan likely originated with a single infected case who developed symptoms sometime between October 26 and December 13, 2019; in Seattle, the seeding likely occurred between December 25, 2019 and January 15, 2020. INTERPRETATION: The spread of COVID-19 in Wuhan and Seattle was far more extensive than initially reported. The virus likely spread for months in Wuhan before the lockdown. Given that COVID-19 appears to be overwhelmingly mild in children, our high estimate for symptomatic pediatric cases in Seattle suggests that there may have been thousands more mild cases at the time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA